بررسی ویژگیهای هیدروژئوشیمیایی و طبقهبندی کیفی منابع آب زیرزمینی دشت هرزندات برای مصارف مختلف با استفاده از روشهای هیدروشیمیایی
محورهای موضوعی : آب و محیط زیستجمیل روزرخ 1 , اصغر اصغری مقدم 2 , عطاالله ندیری 3
1 - کارشناسی ارشد هیدروژئولوژی، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران.
2 - استاد هیدروژئولوژی، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران.
3 - استادیار هیدروژئولوژی، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران.
کلید واژه: آب زیرزمینی, هیدروژئوشیمی, دشت هرزندات, طبقهبندی کیفی,
چکیده مقاله :
زمینه و هدف: در دشت هرزندات به دلیل کمبود بارندگی همواره یکی از چالشها برای فعالیتهای انسانی، کمبود منابع آب و یا نبود منابع مناسب است. هدف از این پژوهش بررسی هیدروژئوشیمی، نابهنجاری های هیدروژئوشیمیایی و تعیین کاربری (مصارف مختلف شرب، کشاورزی و صنعت) آب های زیرزمینی منطقه ی مورد مطالعه است. روش بررسی: با توجه به منابع محدود آبی در دشت هرزندات، 16 نمونه آب زیرزمینی از چاه ها، چشمه ها و قنوات جمع آوری شده که نمونه برداری و تجزیه و تحلیل شیمیایی آن ها با روش های استاندارد صورت گرفته است. یافتهها: نتایج دیاگرام پایپر نشان می دهد که تیپ آب شور در منابع آب زیرزمینی دشت هرزندات تیپ غالب می باشد. محاسبه ی شاخص اشباع کانی های اصلی آب زیرزمینی، تعامل آب و سنگ و حالت اشباع و فوق اشباع بودن نسبت به کانی های دولومیت، کلسیت و آراگونیت را نشان می دهد. بر اساس طبقه بندی کیفی انجام شده، آب های منطقه ی مورد مطالعه از نظر شرب در محدوده ی متوسط تا کاملاً نامطبوع هستند و از نقطه نظر کشاورزی در رده ی آب های شور قرار گرفته و جهت آبیاری نامناسب هستند. از لحاظ مصارف صنعتی نیز برخی از منابع آب دارای خاصیت رسوب گذاری و بخشی نیز خورنده هستند، ولی اکثر نمونه های آب زیرزمینی دارای خصوصیت پوسته گذاری بوده و جهت مصارف صنعتی نامناسب می باشند. نتیجه گیری: نتایج این بررسی حاکی از آن است که اغلب آب های کیفیت پایین از نظر شرب، کشاورزی و صنعت در بخش های مرکزی و شمالی دشت وجود دارند. هم چنین بر اساس نتایج حاصل از نمودار گیبس، فرآیندهایی مانند هوازدگی شیمیایی کانی های تشکیل دهنده ی سنگ و تبخیر بر روی کیفیت آب زیرزمینی دشت هرزندات مؤثر می باشند
Background and Objective: Inadequency of water resources or lack of appropriate resources have been among the challenges for human activities in the Harzandat plain due to shortage of rainfall. The purpose of this study was to evaluate geochemistry and hydrogeochemical anomalies and to determine groundwater usage (different uses for drinking, agriculture and industry) in the study area. Method: Due to the limited water resources in Harzandat plain, 16 groundwater samples were collected from wells, springs and qanats that sampling, and chemical analysis was carried out using standard procedures. Findings: The results of the Piper diagram show that the dominant type of groundwater is saline water in Harzandat plain. Calculation of the saturation index shows the interaction between water and rock and the state of saturation and super saturation relative to dolomite, calcite and aragonite minerals. According to the qualitative classification, the water in the study area falls within the range of moderate levle, and from the agriculture view point it is brackish water and unsuitable for irrigation. For industrial uses, some of the water resources have incrustation properties and they are partly corrosive, but most of the groundwater samples taken from the study area had incrustation properties and were unsuitable for industrial purposes. Conclusion: The results indicated the poor quality of drinking water, agriculture and industry in the central and northern parts of the plain. Also, based on the results from the Gibbs diagram, processes such as chemical weathering of mineral constituents of rock and evaporation influence the quality of groundwater in Harzandat plain.
1- Singhal, B. B. S. and Gupta, R.P., (2010), "Applied Hydrogeology of Fractured Rocks", pp. 205-220.
2- Pazand, K., Hezarkhani, A., Ghanbari Y. and Aghavali N., (2012), "Geochemical and quality assessment of groundwater of Marand Basin, East Azarbaijan Province, northwestern Iran", J Environmental Earth Sciences 72, pp. 134-146.
3- Skordas, K., Papastergios, G., Tziantziou, L., Neofitou N. and Neofitou, C., (2013), "Groundwater hydrogeochemistry of Trikala municipality, central Greece", J Environ Monit Assess 112, pp. 81–94.
4- کلانتری. ن، رحیمی. م، ح و چرچی. ع، 1385، "استفاده از دیاگرامهای ترکیبی، تحلیل عاملی و نمایههای اشباع در ارزیابی کیفی آب زیرزمینی دشتهای زویرچری و خزان"، مجله زمین شناسی مهندسی، شماره دوم، صص 114-95.
5- Hossain, G., Howladar, M. F., Nessa, L., Ahmed, S. S. and Quamruzzaman, Ch., (2010), "Hydrochemistry and Classification of Groundwater Resources of Ishwardi Municipal Area, Pabna District, Bangladesh", Geotech Geol Eng, V. 28, pp. 671–679.
6- Emberger, L., (1930), "Sur une formule applicable en geographie botanique", Cah, Herb, Séanc, Acad, Sci, 191, pp. 389–390.
7- سازمان آب منطقهای استان آذربایجان شرقی، 1390، "گزارش سالانه بیلان آب دشت هرزندات"، ص 186.
8- آقا نباتی. س، ع، 1383، "زمین شناسی ایران"، سازمان زمین شناسی و اکتشافات معدنی کشور، ص586.
9- آقا زاده. ن، 1383، "بررسی هیدروژئولوژی آبخوان دشت هرزندات و ارایه مدل ریاضی آن"، پایان نامه کارشناسی ارشد هیدروژئولوژی دانشگاه تبریز، ص140.
10- American Public Health Association, (1998), "Standard Method for the Examination of Water and Waste water", 17th end (Washington, DC).
11- WHO., (2004), "Guidelines for drinking water quality", (Vol. 1, 2nd ed., p. 130), Geneva: World Health Organization, recommendations.
12- Sikdar, P., Sarkar S. and Palchoudhwy S., (2001), "Geochemical evolution of groundwaters in the Quaternary aquifer of Calcutta and Howrah, India", J. Asian Earth Sci 19, pp. 579–594.
13- Pazand, K., Hezarkhani, A., Ghanbari Y. and Aghavali N., (2011), "Groundwater geochemistry in the Meshkinshahr Basin of Ardabil Province in Iran", J Environ Earth Sci 65, pp. 871–879.
14- Guo, H. and Wang, Y., (2005), "Geochemical characteristics of shallow groundwater in Datong basin, northwestern China", J Geochem Explor 87, pp. 109–120.
15- Meyback, M., (1987), "Global chemical weathering of surficial rocks estimated from river dissolved loads", Am J Sci 287, pp. 401–428.
16- Todd D. and Mays, L., (2005), "Ground water hydrology", Wiley, USA. 652 pp.
17- Davis, S. N. and Dewiest, R. J. M., (1966), " Hydrogeology", Krieger Publication Co, 476 pp.
18- Hounslow, A. W., (1995), "Water Quality Data: Analysis and interpretation", Lewis Publisher. 397 pp.
19- Parkhurst, D. and Appelo, C., (1999), "PHREEQC for Windows version 1.4.07, A hydrogeochemical transport model", U.S, Geological Survey Software.
20- Leybourne, M. I., (2007), "Aqueous geochemistry in mineral exploration, in Good fellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods", Geological Association of Canada, Mineral Deposits Division, Special Publication 5, pp. 1007-1033.
21- جلالی. ل، 1390، "بررسی کمی و کیفی منابع آب زیرزمینی آبخوان دشت خوی"، پایاننامه کارشناسی ارشد هیدروژئولوژی، دانشگاه تبریز، ص 173.
22- مقیمی. ه، 1385، "هیدروژئوشیمی"، انتشارات دانشگاه پیام نور، ص 155.
23- فیجانی. ا، 1386، "بررسی هیدروژئولوژی و هیدروشیمی آبخوانهای بازالتی-آبرفتی دشتهای بازرگان و پلدشت"، پایاننامه کارشناسی ارشد هیدروژئولوژی، دانشگاه تبریز، ص 148.
24- وفایی. ه، 1387، "طبقهبندی کیفی منابع آبی دشت گل تپه (شمال همدان) برای مصارف مختلف"، سومین کنفرانس مدیریت منابع آب ایران، تبریز.
25- Gibbs, R. J., (1970), "Mechanisms controlling world water chemistry", Science 17, pp.1088-1090.
26- صادقی اقدم. ف، 1391، "بررسی تغییرات زمانی و مکانی کیفیت منابع آب ورودی به سد سهند هشترود با تأکید بر آنومالی آرسنیک در منطقه"، پایان نامه کارشناسی ارشد، دانشگاه تبریز، ص134.
27- Subbarao, C., Subbarao N.V. and Chandu S. N., (1996), "Characterization of groundwater contamination using factor analysis", Environmental Geology, V.28 No.4, pp.175-180.
_||_