Saffron Nanoemulsions: an emphasis on the two recent patents for ultrasonic Nanoemulsion of saffron
محورهای موضوعی : food scienceH. Ahari 1 , Sima Moradi 2 , A. A. Anvar 3 , Sara Allahyaribeik 4
1 - Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 - MSc Student of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 - Associate Professor of the Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran.
4 - Assistant Professor of the Department of Marine Sciences, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
کلید واژه: Nanoemulsions, Saffron, Bioactive compounds, Extraction,
چکیده مقاله :
Nanoemulsions are a colloidal dispersion of oil/water or water/oil phases stabilized by emulsifiers. The physicochemical properties of nanoemulsions have made them suitable candidates for the delivery of bioactive compounds. Oil-in-water nanoemulsions are proper carriers for hydrophobic and water-in-oil or water-in-oil-in-water nanoemulsions are good carriers for hydrophilic compounds. Saffron is an expensive bulbous stemless herb whose different bioactive ingredients including crocins, crocetin, safranal, picrocrocin, and essential oils have valuable nutritional, medicinal, pharmaceutical, and antimicrobial properties. The use of nanoemulsion technology is a promising approach for saffron processing. The emulsion liquid membrane is one of the effective techniques for extracting saffron bioactive. On the other hand, encapsulating saffron extract in nanoemulsion droplets can increase the stability, bioavailability, and controlled release of bioactive ingredients of saffron. Due to its inherent antimicrobial activity, saffron can be used in the form of nanoemulsion coatings to increase the quality and shelf life of food products. In this study, the existing studies on saffron nanoemulsions processing were reviewed. The application of nanoemulsion techniques for saffron extraction, saffron bioactive nanoencapsulation, as well as the probable preservative properties of saffron essential oils for food packaging have been discussed. This article also reveals information on two recent patents on the subject of saffron nanoemulsion by ultrasonic method.
Nanoemulsions are a colloidal dispersion of oil/water or water/oil phases stabilized by emulsifiers. The physicochemical properties of nanoemulsions have made them suitable candidates for the delivery of bioactive compounds. Oil-in-water nanoemulsions are proper carriers for hydrophobic and water-in-oil or water-in-oil-in-water nanoemulsions are good carriers for hydrophilic compounds. Saffron is an expensive bulbous stemless herb whose different bioactive ingredients including crocins, crocetin, safranal, picrocrocin, and essential oils have valuable nutritional, medicinal, pharmaceutical, and antimicrobial properties. The use of nanoemulsion technology is a promising approach for saffron processing. The emulsion liquid membrane is one of the effective techniques for extracting saffron bioactive. On the other hand, encapsulating saffron extract in nanoemulsion droplets can increase the stability, bioavailability, and controlled release of bioactive ingredients of saffron. Due to its inherent antimicrobial activity, saffron can be used in the form of nanoemulsion coatings to increase the quality and shelf life of food products. In this study, the existing studies on saffron nanoemulsions processing were reviewed. The application of nanoemulsion techniques for saffron extraction, saffron bioactive nanoencapsulation, as well as the probable preservative properties of saffron essential oils for food packaging have been discussed. This article also reveals information on two recent patents on the subject of saffron nanoemulsion by ultrasonic method.
Abbassian, K. & Kargari, A. (2016). Effect of polymer addition to membrane phase to improve the stability of emulsion liquid membrane for phenol pertraction. Desalination and Water Treatment, 57(7), 2942-2951. doi:10.1080/19443994.2014.983981
Abdou, E. S., Galhoum, G. F. & Mohamed, E. N. (2018). Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocolloids, 83, 445-453. doi:https://doi.org/10.1016/j.foodhyd.2018.05.026
Aboutorab, M., Ahari, H., Allahyaribeik, S., Yousefi, S. & Motalebi, A. (2021). Nano‐emulsion of saffron essential oil by spontaneous emulsification and ultrasonic homogenization extend the shelf life of shrimp (Crocus Sativus L.). Journal of Food Processing and Preservation, 45. doi:10.1111/jfpp.15224
Ahmad, A. S., Ansari, M. A., Ahmad, M., Saleem, S., Yousuf, S., Hoda, M. N. & Islam, F. (2005). Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav, 81(4), 805-813. doi:10.1016/j.pbb.2005.06.007
Akhondzadeh Basti, A., Ghoreishi, S. A., Noorbala, A. A., Akhondzadeh, S. H. & Rezazadeh, S. (2008). Petal and Stigma of Crocus sativus L. in the Treatment of Depression: A Pilot Double - blind Randomized Trial. [Petal and Stigma of Crocus sativus L. in the Treatment of Depression: A Pilot Double - blind Randomized Trial]. jmpir, 7(25), 29-36.
Akkam, Y., Rababah, T., Costa, R., Almajwal, A., Feng, H., Laborde, J. E. A. & Razak, S. (2021). Pea Protein Nanoemulsion Effectively Stabilizes Vitamin D in Food Products: A Potential Supplementation during the COVID-19 Pandemic. Nanomaterials (Basel, Switzerland), 11(4), 887. doi:10.3390/nano11040887
Anton, N. & Vandamme, T. F. (2009). The universality of low-energy nano-emulsification. Int J Pharm, 377(1-2), 142-147. doi:10.1016/j.ijpharm.2009.05.014
Anton, N. & Vandamme, T. F. (2011). Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res, 28(5), 978-985. doi:10.1007/s11095-010-0309-1
Ashaolu, T. J. (2021). Nanoemulsions for health, food, and cosmetics: a review. Environmental Chemistry Letters. doi:10.1007/s10311-021-01216-9
Assimopoulou, A. N., Sinakos, Z. & Papageorgiou, V. P. (2005). Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res, 19(11), 997-1000. doi:10.1002/ptr.1749
Aswathanarayan, J. B. & Vittal, R. R. (2019). Nanoemulsions and Their Potential Applications in Food Industry. Frontiers in Sustainable Food Systems, 3(95). doi:10.3389/fsufs.2019.00095
Azmi, N. A., Elgharbawy, A. A. M., Motlagh, S. R., Samsudin, N. & Salleh, H. M. (2019). Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes, 7(9). doi:10.3390/pr7090617
Bahrami, F. & Yousefi, S. S. (2019). The Effect of Efficient Bioactive Nano-Emulsion Formulation Based on Polylophium involucratum on Improving Quality Features of Green Tiger Pawn Fridge Storage. Ann Mil Health Sci Res, 17(1), e89422.
Beloqui, A., Solinís, M., Rodríguez-Gascón, A., Almeida, A. J. & Préat, V. (2016). Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine, 12(1), 143-161. doi:10.1016/j.nano.2015.09.004
Berton-Carabin, C. C., Sagis, L. & Schroën, K. (2018). Formation, Structure, and Functionality of Interfacial Layers in Food Emulsions. Annual Review of Food Science and Technology, 9(1), 551-587. doi:10.1146/annurev-food-030117-012405
Bondi, M., Lauková, A., de Niederhausern, S., Messi, P. & Papadopoulou, C. (2017). Natural Preservatives to Improve Food Quality and Safety. Journal of Food Quality, 2017, 1090932. doi:10.1155/2017/1090932
Briuglia, M. L., Rotella, C., McFarlane, A. & Lamprou, D. A. (2015). Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res, 5(3), 231-242. doi:10.1007/s13346-015-0220-8
Chellaram, C., Murugaboopathi, G., John, A. A., Sivakumar, R., Ganesan, S., Krithika, S. & Priya, G. (2014). Significance of Nanotechnology in Food Industry. APCBEE Procedia, 8, 109-113. doi:https://doi.org/10.1016/j.apcbee.2014.03.010
Chen, J., Li, F., Li, Z., McClements, D. J. & Xiao, H. (2017). Encapsulation of carotenoids in emulsion-based delivery systems: enhancement of b-carotene water-dispersibility and chemical stability. Food Hydrocoll, 69, 49-55.
Cheong, A. M., Tan, C. P. & Nyam, K. L. (2018). Stability of Bioactive Compounds and Antioxidant Activities of Kenaf Seed Oil-in-Water Nanoemulsions under Different Storage Temperatures. 83(10), 2457-2465. doi:10.1111/1750-3841.14332
Date, A. A., Desai, N., Dixit, R. & Nagarsenker, M. (2010). Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (Lond), 5(10), 1595-1616. doi:10.2217/nnm.10.126
Esfanjani, A. F., Jafari, S. M., Assadpoor, E. & Mohammadi, A. (2015). Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. Journal of Food Engineering, 165, 149-155. doi:https://doi.org/10.1016/j.jfoodeng.2015.06.022
Ezhilarasi, P. N., Karthik, P., Chhanwal, N. & Anandharamakrishnan, C. (2013). Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food and Bioprocess Technology, 6(3), 628-647. doi:10.1007/s11947-012-0944-0
Faridi Esfanjani, A., Jafari, S. M. & Assadpour, E. (2017). Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chem, 221, 1962-1969. doi:https://doi.org/10.1016/j.foodchem.2016.11.149
Finley, J. W. & Gao, S. (2017). A Perspective on Crocus sativus L. (Saffron) Constituent Crocin: A Potent Water-Soluble Antioxidant and Potential Therapy for Alzheimer's Disease. J Agric Food Chem, 65(5), 1005-1020. doi:10.1021/acs.jafc.6b04398
Gahruie, H., Niakousari, M., Parastouei, K., Mokhtarian, M., Es, I. & Mousavi Khaneghah, A. (2020). Co‐encapsulation of vitamin D3 and saffron petals’ bioactive compounds in nanoemulsions: Effects of emulsifier and homogenizer types. Journal of Food Processing and Preservation. doi:10.1111/jfpp.14629
Gainer, J. L., Sheehan, J. P., Larner, J. M. & Jones, D. R. (2017). Trans sodium crocetinate with temozolomide and radiation therapy for glioblastoma multiforme. J Neurosurg, 126(2), 460-466. doi:10.3171/2016.3.jns152693
Garavand, F., Rahaee, S., Vahedikia, N. & Jafari, S. M. (2019). Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends in Food Science & Technology, 89, 26-44.
Ghaffari, S., Hatami, H. & Dehghan, G. (2015). Saffron ethanolic extract attenuates oxidative stress, spatial learning, and memory impairments induced by local injection of ethidium bromide. Res Pharm Sci, 10(3), 222-232.
Gharibzahedi, S. M. T. & Jafari, S. M. (2018). Chapter 9 - Fabrication of Nanoemulsions by Ultrasonication. In S. M. Jafari & D. J. McClements (Eds.), Nanoemulsions (pp. 233-285): Academic Press.
Ghasemiyeh, P. & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci, 13(4), 288-303. doi:10.4103/1735-5362.235156
Golfomitsou, I., Mitsou, E., Xenakis, A. & Papadimitriou, V. (2018). Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. Journal of Molecular Liquids, 268, 734-742. doi:https://doi.org/10.1016/j.molliq.2018.07.109
Hashemi Gahruie, H., Ziaee, E., Eskandari, M. H. & Hosseini, S. M. (2017). Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr Polym, 166, 93-103. doi:10.1016/j.carbpol.2017.02.103
He, X. & Hwang, H. M. (2016). Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis, 24(4), 671-681. doi:https://doi.org/10.1016/j.jfda.2016.06.001
Hosseini, A., Razavi, B. M. & Hosseinzadeh, H. (2018). Pharmacokinetic Properties of Saffron and its Active Components. European Journal of Drug Metabolism and Pharmacokinetics, 43(4), 383-390. doi:10.1007/s13318-017-0449-3
Hosseinzadeh, H. & Nassiri-Asl, M. (2013). Avicenna's (Ibn Sina) the Canon of Medicine and saffron (Crocus sativus): a review. Phytother Res, 27(4), 475-483. doi:10.1002/ptr.4784
Jafari, S., Khazaei, K. & Assadpour, E. (2019). Production of a natural color through microwave‐assisted extraction of saffron tepal's anthocyanins. Food Science & Nutrition, 7. doi:10.1002/fsn3.978
Jafari, S. M. (2017). 1 - An overview of nanoencapsulation techniques and their classification. In S. M. Jafari (Ed.), Nanoencapsulation Technologies for the Food and Nutraceutical Industries (pp. 1-34): Academic Press.
Jafari, S. M., He, Y. & Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82(4), 478-488. doi:https://doi.org/10.1016/j.jfoodeng.2007.03.007
José Bagur, M., Alonso Salinas, G. L., Jiménez-Monreal, A. M., Chaouqi, S., Llorens, S., Martínez-Tomé, M. & Alonso, G. L. (2017). Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules, 23(1). doi:10.3390/molecules23010030
Kumar, A., Thakur, A. & Panesar, P. S. (2019). A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams. Reviews in Environmental Science and Bio/Technology, 18(1), 153-182. doi:10.1007/s11157-019-09492-2
Kyriakoudi, A. & Tsimidou, M. Z. (2018). Properties of encapsulated saffron extracts in maltodextrin using the Büchi B-90 nano spray-dryer. Food Chem, 266, 458-465. doi:https://doi.org/10.1016/j.foodchem.2018.06.038
Lahidjani, L., Ahari, H. & Sharifan, A. (2020). Influence of curcumin-loaded nanoemulsion fabricated through emulsion phase inversion on the shelf life of Oncorhynchus mykiss stored at 4°C. Journal of Food Processing and Preservation, 44, e14592. doi:10.1111/jfpp.14592
Leong, T. S., Wooster, T. J., Kentish, S. E. & Ashokkumar, M. (2009). Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem, 16(6), 721-727. doi:10.1016/j.ultsonch.2009.02.008
Liang, R., Huang, Q., Ma, J., Shoemaker, C. F. & Zhong, F. (2013). Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocolloids, 33(2), 225-233. doi:https://doi.org/10.1016/j.foodhyd.2013.03.015
Ma, P., Zeng, Q., Tai, K., He, X., Yao, Y., Hong, X. & Yuan, F. (2018). Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios. Journal of food science and technology, 55(9), 3485-3497. doi:10.1007/s13197-018-3273-0
Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B. & Graves, S. M. (2006). Nanoemulsions: formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18, 635-666.
McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 7(6), 2297-2316. doi:10.1039/C0SM00549E
Medeiros, A. K. d. O. C., Gomes, C. d. C., Amaral, M. L. Q. d. A., Medeiros, L. D. G. d., Medeiros, I., Porto, D. L. & Passos, T. S. (2019). Nanoencapsulation improved water solubility and color stability of carotenoids extracted from Cantaloupe melon (Cucumis melo L.). Food Chem, 270, 562-572. doi:10.1016/j.foodchem.2018.07.099
Meghani, N., Patel, P., Kansara, K., Ranjan, S., Dasgupta, N., Ramalingam, C. & Kumar, A. (2018). Formulation of vitamin D encapsulated cinnamon oil nanoemulsion: Its potential anti-cancerous activity in human alveolar carcinoma cells. Colloids Surf B Biointerfaces, 166, 349-357. doi:10.1016/j.colsurfb.2018.03.041
Mehrnia, M.-A., Jafari, S.-M., Makhmal-Zadeh, B. S. & Maghsoudlou, Y. (2017). Rheological and release properties of double nano-emulsions containing crocin prepared with Angum gum, Arabic gum and whey protein. Food Hydrocolloids, 66, 259-267. doi:https://doi.org/10.1016/j.foodhyd.2016.11.033
Mehrnia, M. A., Jafari, S. M., Makhmal-Zadeh, B. S. & Maghsoudlou, Y. (2016). Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification. Int J Biol Macromol, 84, 261-267. doi:10.1016/j.ijbiomac.2015.12.029
Melnyk, J. P., Wang, S. & Marcone, M. F. (2010). Chemical and biological properties of the world's most expensive spice: Saffron. Food Research International, 43(8), 1981-1989. doi:https://doi.org/10.1016/j.foodres.2010.07.033
Meng, Q., Long, P., Zhou, J., Ho, C.-T., Zou, X., Chen, B. & Zhang, L. (2019). Improved absorption of β-carotene by encapsulation in an oil-in-water nanoemulsion containing tea polyphenols in the aqueous phase. Food Research International, 116, 731-736. doi:https://doi.org/10.1016/j.foodres.2018.09.004
Moghaddam, A. D., Garavand, F., Razavi, S. H. & Talatappe, H. D. (2018). Production of saffron-based probiotic beverage by lactic acid bacteria. Journal of Food Measurement and Characterization, 12, 2708-2717.
Mokhtari, B. & Pourabdollah, K. (2013). Extraction of saffron ingredients and its fingerprinting by nano-emulsion membranes. Indian Journal of Chemical Technology, 20, 222-228.
Motamedi, H., Darabpour, E., Gholipour, M. & Seyyed Nejad, S. M. (2010). In vitro assay for the anti-Brucella activity of medicinal plants against tetracycline-resistant Brucella melitensis. J Zhejiang Univ Sci B, 11(7), 506-511. doi:10.1631/jzus.B0900365
Najaf Najafi, M., Nemati, S., Mohammadi-Sani, A. & Kadkhodaee, R. (2020). The Encapsulation of Saffron Extract in Double Emulsion System and Stability Evaluation of Its Active Constituents using Principal Component Analysis Method during Storage Period. Research and Innovation in Food Science and Technology, 9(2), 127-142. doi:10.22101/jrifst.2020.170801.1063
Nasiri, M., Ahari, H., Sharifan, A., Anvar, A. A. & Kakolaki, S. (2020). Nanoemulsion production techniques upgrade bioactivity potential of nanoemulsified essential oils on Acipenser stellatus filet preserving. International Journal of Food Properties, 23(1), 2174-2188. doi:10.1080/10942912.2020.1844749
Nile, S. H., Baskar, V., Selvaraj, D., Nile, A., Xiao, J. & Kai, G. (2020). Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. Nano-Micro Letters, 12(1), 45. doi:10.1007/s40820-020-0383-9
Oh, D. H., Balakrishnan, P., Oh, Y. K., Kim, D. D., Yong, C. S. & Choi, H. G. (2011). Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification. Int J Pharm, 404(1-2), 191-197. doi:10.1016/j.ijpharm.2010.10.045
Pateiro, M., Gómez, B., Munekata, P. E. S. & Barba, F. J. (2021). Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. 26(6). doi:10.3390/molecules26061547
Pintado, C. (2011). Bactericidal effect of saffron (Crocus sativus L.) on Salmonella enterica during storage. Food control, v. 22(no. 3-4), pp. 638-642-2011 v.2022 no.2013-2014. doi:10.1016/j.foodcont.2010.09.031
Premkumar, K., Abraham, S. K., Santhiya, S. T. & Ramesh, A. (2003). Inhibitory effects of aqueous crude extract of Saffron (Crocus sativus L.) on chemical-induced genotoxicity in mice. Asia Pac J Clin Nutr, 12(4), 474-476.
Razak, S. I. A., Anwar Hamzah, M. S., Yee, F. C., Kadir, M. R. A. & Nayan, N. H. M. (2017). A Review on Medicinal Properties of Saffron toward Major Diseases. Journal of Herbs, Spices & Medicinal Plants, 23(2), 98-116. doi:10.1080/10496475.2016.1272522
Rehman, A., Ahmad, T., Aadil, R. M., Spotti, M. J., Bakry, A. M., Khan, I. M. & Tong, Q. (2019). Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends in Food Science & Technology, 90, 35-46. doi:https://doi.org/10.1016/j.tifs.2019.05.015
Sekhon, B. S. (2010). Food nanotechnology - an overview. Nanotechnology, science and applications, 3, 1-15.
Shafiee, M., Arekhi, S., Omranzadeh, A. & Sahebkar, A. (2018). Saffron in the treatment of depression, anxiety and other mental disorders: Current evidence and potential mechanisms of action. J Affect Disord, 227, 330-337. doi:10.1016/j.jad.2017.11.020
Sheng, B., Li, L., Zhang, X., Jiao, W., Zhao, D., Wang, X. & Rong, H. (2018). Physicochemical Properties and Chemical Stability of β-Carotene Bilayer Emulsion Coated with Bovine Serum Albumin and Arabic Gum Compared to Monolayer Emulsions. Molecules, 23(2), 495. doi:10.3390/molecules23020495
Silva, H. D., Cerqueira, M. Â. & Vicente, A. A. (2012). Nanoemulsions for Food Applications: Development and Characterization. Food and Bioprocess Technology, 5(3), 854-867. doi:10.1007/s11947-011-0683-7
Silva, H. D., Poejo, J., Pinheiro, A. C., Donsì, F., Serra, A. T., Duarte, C. M. M. & Vicente, A. A. (2018). Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. Journal of Functional Foods, 48, 605-613. doi:10.1016/j.jff.2018.08.002
Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V. K. & Rather, I. A. (2017). Application of Nanotechnology in Food Science: Perception and Overview. Frontiers in Microbiology, 8(1501). doi:10.3389/fmicb.2017.01501
Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K. & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28-49. doi:https://doi.org/10.1016/j.jconrel.2017.03.008
Solans, C. & Solé, I. (2012). Nano-emulsions: Formation by low-energy methods. Current Opinion in Colloid & Interface Science, 17(5), 246-254. doi:https://doi.org/10.1016/j.cocis.2012.07.003
Tan, C. & Nakajima, M. (2005). Effect of polyglycerol esters of fatty acids on physicochemical properties and stability of ²-carotene nanodispersions prepared by emulsification/evaporation method. Journal of the Science of Food and Agriculture, 85, 121-126.
Tan, C. P. & Nakajima, M. (2005). β-Carotene nanodispersions: preparation, characterization and stability evaluation. Food Chem, 92(4), 661-671. doi:https://doi.org/10.1016/j.foodchem.2004.08.044
Tian, H., Li, D., Xu, T., Hu, J., Rong, Y. & Zhao, B. (2017). Citral stabilization and characterization of nanoemulsions stabilized by a mixture of gelatin and Tween 20 in an acidic system. J Sci Food Agric, 97(9), 2991-2998. doi:10.1002/jsfa.8139
Tóth, B., Hegyi, P., Lantos, T., Szakács, Z., Kerémi, B., Varga, G. & Csupor, D. (2019). The Efficacy of Saffron in the Treatment of Mild to Moderate Depression: A Meta-analysis. Planta Med, 85(1), 24-31. doi:10.1055/a-0660-9565
Vakili, A., Einali, M. R. & Bandegi, A. R. (2014). Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. J Stroke Cerebrovasc Dis, 23(1), 106-113. doi:10.1016/j.jstrokecerebrovasdis.2012.10.008
Villalobos-Castillejos, F., Granillo-Guerrero, V. G., Leyva-Daniel, D. E., Alamilla-Beltrán, L., Gutiérrez-López, G. F., Monroy-Villagrana, A. & Jafari, S. M. (2018). Chapter 8 - Fabrication of Nanoemulsions by Microfluidization. In S. M. Jafari & D. J. McClements (Eds.), Nanoemulsions (pp. 207-232): Academic Press.
Walia, N. & Chen, L. (2020). Pea protein based vitamin D nanoemulsions: Fabrication, stability and in vitro study using Caco-2 cells. Food Chem, 305, 125475. doi:https://doi.org/10.1016/j.foodchem.2019.125475
Wei, Z. & Gao, Y. (2016). Physicochemical properties of β-carotene bilayer emulsions coated by milk proteins and chitosan–EGCG conjugates. Food Hydrocolloids, 52, 590-599. doi:https://doi.org/10.1016/j.foodhyd.2015.08.002
Yang, X., Tian, H., Ho, C. T. & Huang, Q. (2011). Inhibition of citral degradation by oil-in-water nanoemulsions combined with antioxidants. J Agric Food Chem, 59(11), 6113-6119. doi:10.1021/jf2012375
Zhang, J., Bing, L. & Reineccius, G. A. (2016). Comparison of modified starch and Quillaja saponins in the formation and stabilization of flavor nanoemulsions. Food Chem, 192, 53-59. doi:10.1016/j.foodchem.2015.06.078
Zhang, Z. & McClements, D. J. (2018). Chapter 2 - Overview of Nanoemulsion Properties: Stability, Rheology, and Appearance. In S. M. Jafari & D. J. McClements (Eds.), Nanoemulsions (pp. 21-49): Academic Press.
Zhao, Q., Ho, C. T. & Huang, Q. (2013). Effect of ubiquinol-10 on citral stability and off-flavor formation in oil-in-water (O/W) nanoemulsions. J Agric Food Chem, 61(31), 7462-7469. doi:10.1021/jf4017527