اثرات ماده Trichostatin A، بازدارنده هيستون دی استیلاز، بر ریخت شناسی، کنیدیومزایى و رشد رویشی Fusarium graminearum عامل بلایت فوزاريومي سنبله گندم
محورهای موضوعی : بیماری شناسی گیاهی
شیوا امین
1
,
سعید رضائى
2
,
امیر موسوی
3
,
حمیدرضا زمانیزاده
4
1 - گروه گیاهپزشکی، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران.
2 - عضو هیأت علمی گروه گیاهپزشکی، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران، ایران.
3 - گروه زيست فناوری مولکولی گیاهی، پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری، تهران، ایران
4 - گروه گیاهپزشکی، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: اپیژنتیک, دیاستیلاسیون, کروماتین, Triticum aestivum, TSA,
چکیده مقاله :
استیلاسیون یکی از مکانیسمهای مهم تنظیم بیان ژن در سطح پس از ترجمه میباشد که توسط آنزیمهای هیستون استیل ترنسفراز و هیستون دی استیلاز کنترل میشود. آنزیمهای هیستون دی استیلاز قارچی در بیماریزایی، پاسخگویی به تنشهای محیطی و تولید متابولیتهای ثانویه اهمیت دارند. بنابراین در این مطالعه، اثرات احتمالی بازدارنده هیستون دیاستیلازTrichostatin A (TSA) بر ریختشناسی Fusarium graminearum، عامل بیماری بلایت فوزاریومی، مورد بررسی قرار گرفت. قارچ روی محیطکشت سیبزمینی-دکستروز-آگار حاوی TSA (5/1، سه و 10 میکروگرم بر میلیلیتر) کشت و سپس رشد رویشی و ریختشناسی آن در روزهای سوم، پنجم و هفتم پس از کشت ارزیابی شد. رشد شعاعی قارچ پس از سه روز در حضور TSA کاهش یافت. کمترین میزان رشد ریسهها نسبت به شاهد، در روز هفتم در محیط کشت حاوی 10 میکروگرم بر میلیلیتر از TSA رخ داد. بهعلاوه، TSA موجب القای رشد ریسههای هوایی قارچ شد. در آزمون کنیدیومزایی، مقایسه تیمار با شاهد نشان دهنده کاهش تولید کنیدیوم در پاسخ به تمام غلظتهای TSA بود. کمترین میزان کنیدیومزایی در حضور 10 میکروگرم بر میلیلیتر از ماده بازدارنده اتفاق افتاد. نتایج نشان دهنده نقش تغییرات اپی ژنتیکی در تنظیم بیان ژنهای F. graminearum میباشند و ممکن است در ارائه راهکارهای جدید برای مدیریت بیماری بلایت فوزاریومی کمک کنند.
Acetylation is an important mechanism to regulate gene expression at a post-translational level. The process is catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs play an essential role in fungal pathogenesis, response to environmental stress, and production of secondary metabolites. Therefore, this study aims to investigate the possible effects of Trichostatin A (TSA), a histone deacetylase inhibitor, on the morphology of Fusarium graminearum, the causal agent of Fusarium Head Blight disease. The fungus was grown on PDA medium supplemented with TSA at different dosages of 1.5, 3, and 10 µg mL-1. The vegetative growth and morphological characteristics of the fungi were evaluated on days 3, 5, and 7 after inoculation. Radial growth of the fungi was significantly suppressed by TSA after three days of exposure. Compared to the control, the lowest mycelial growth was observed in culture media supplemented with 10 µg mL-1 TSA on day seven. Additionally, TSA caused aerial hyphae formation. Conidia production decreased in response to all concentrations of TSA, and the minimum conidiation occurred in the highest concentration (10 µg mL-1). The results showed the role of epigenetic modifications in F. graminearum gene expression and may help to provide new strategies to manage Fusarium head blight disease.
بصیرنیا، ط. 1392. مطالعه مولکولی و بیوشیمیایی نقش histone deacetylases در قارچ Aspergillus flavus عامل آلودگی پسته. پایان¬نامه دکتری، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، تهران. 151 صفحه.
رستمی، ا. و صارمی، ح. 1397. بررسی تأثیر عامل¬های مؤثر در میزان تشکیل پروتوپلاست در قارچ F. oxysporum با هدف استفاده در امتزاج پروتوپلاست. دانش گیاهپزشکی ایران 49(1): 155-164.
Alisaac, E. and Mahlein, A.K. 2023. Fusarium head blight on wheat: Biology, modern detection and diagnosis and integrated disease management. Toxins 15(3): 192. doi: 10.3390/toxins15030192.
Amin, S., Rezaee, S., Mousavi, A. and Zamanizadeh, H. 2024. The histone deacetylase inhibitor Trichostatin-A modifies the expression of trichothecene mycotoxin regulatory gene Tri5 in Fusarium graminearum. Iranian Journal of Biotechnology 22(3): 90-100. doi: 10.30498/ijb.2024.437331.3872.
Baidyaroy, D., Brosch, G., Graessle, S., Trojer, D. and Walton, J. 2002. Characterization of inhibitor resistant histone deacetylase activity in plant pathogenic fungi. Eucaryotic Cell 1(4): 538-547. doi: 10.1128/EC.1.4.538-547.
Basimia, T., Rezaee, S., Zamanyzadeh, H. and Mousavi, A. 2013. SAHA, histone deacetylase inhibitor causes reduction of aflatoxin production and conidiation in the Aspergillus flavus. Iranian Journal of Biotechnology 3(12): 9-12.
Bauer, I., Varadarajan, D., Pidroni, A., Gross, S., Vergeiner, S., Faber, B., Hermann, M., Tribus, M., Brosch, G. and Graessle, S. 2016. A class 1 histone deacetylase with potential as an antifungal target. mBio 7(6): e00831-16. doi: 10.1128/mBio.00831-16.
Brandfass, C. and Karlovsky, P. 2008. Upscaled CTAB-Based DNA extraction and Real-Time PCR assays for Fusarium culmorum and F. graminearum DNA in plant material with reduced sampling error. International Journal of Molecular Science 9: 2306-2321. doi: 10.3390/ijms9112306.
Brando, F., Derengoski, L., Albuquerque, R., Nicola, A., Silva-Pereria, I. and Pocas-Fonseca, M.J. 2015. Histone deacetylases inhibitors effect on Cryptococcus neoformans major virulence phenotypes. Virulence 6(6): 618-30. doi: 10.1080/21505594.2015.1038014.
Brauer, E.K., Subramaniam, R. and Harris, L.J. 2020. Regulation and dynamics of gene expression during the life cycle of Fusarium graminearum. Phytopathology 110(8): 1368-1374. doi: 10.1094/PHYTO-03-20-0080-IA.
Chen, Y., Kistler, H.C. and Ma, Z. 2019. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management. Annual Review of Phytopathology 57: 15–39. doi: 10.1146/annurev-phyto-082718-100318.
Ding, S., Mehrabi, R., Koten, C., Kang, Z.,Wei, Y., Seong, K., Kistler, H. and Xu, J. 2009. Transducin Beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum. Eucaryotic Cell 8(6): 867-876. doi:10.1128/EC.00048-09.
Elias-Villalobos, A., Fernandez-Alvarez, A., Moreno-Sanchez, I., Helmlinger, D.I. and Ibeas, J. 2015. The Hos2 histone deacetylase controls Ustilago maydis virulence through direct regulation of mating-type genes. Pathogens 11(8): e1005134. doi: 10.1371%2Fjournal.ppat.1005134.
Furumai, K., Komatu, Y., Nishino, N., Khochbin, S., Yoshida, M. and Horinouchi, S. 2001. Potent histone deacetylase inhibitors built from Trichostatin A and cyclic tetrapeptide antibiotics inducing Trapoxin. PANS 98(1): 87-92. doi: 10.1073/pnas.98.1.87.
Gaikwad, A., Sagar, V. and Pandey, A. 2015. Natural HDAC Inhibitors: Nature’s answer to the cancer. Journal of Pharmaceutical Science and Technology 1(1): 26-36.
Hu, Y., Zhou, Y., Mao, Z., Chen, F. and Shao, Y. 2017. NAD+-dependent HDAC inhibitor stimulates Monascus pigment production but inhibits citrinin. AMB Express 7(1): 166. doi:10.1186/s13568-017-0467-1.
Ibeagha-Awemu, E.M., Kiefer, H., Mckay, S.E. and Liu, G. 2022. Editorial: Epigenetic variation influences on livestock production and disease traits. Frontiers in Genetic 13: 942747. doi: 10.3389/fgene.2022.942747.
Izawa, M., Takekawa, O., Arie, T., Teraoka ,T., Yoshida, M., Kimura, M. and Kamakura, T. 2009. Inhibition of histone deacetylase causes reduction of appressorium formation in the rice blast fungus Magnaport oryzae. Journal of General and Applied Microbiology 55: 489-498. doi.org/10.2323/jgam.55.489.
Li, Y., Wang, C., Liu, W., Wang, G., Kang, Z., Kistler, H. and Xu, J. 2011. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Molecular Plant Microbe Interactions 24(4): 487-496. doi: 10.1094/MPMI-10-10-0233.
Lin, C., Cao, X., Qu, Z., Zhang, S., Naqvi, N. and Deng, Y. 2021. The histone deacetylases MoRpd3 and MoHst4 regulate growth, conidiation, and pathogenicity in the rice blast fungus Magnaporthe oryzae. mSphere 6: e00118-21. doi: 10.1128/mSphere.00118-21.
Liu, S., Wang, Q., Liu, N., Luo, H., He, C. and An, B. 2022. The histone deacetylase Hos2 controls pathogenicity through regulation of melanin biosynthesis and appressorium formation in Colletotrichum gloeosporioide. Phytopathological Research 4(1): 1-13. doi: 10.1186/s42483-022-00126-0.
Nicholson, P., Simpson, D.R., Wilson, A.H., Chandler, E. and Thomsett, M. 2004. Detection and differentiation of trichothecene and enniatin-producing Fusarium species on small grain cereals. European Journal of Plant Pathology 110: 503-514. doi: 10.1023/B:EJPP.0000032390.65641.a7.
Pang, N., Sun, J., Che, S. and Yang, N. 2022. Structural characterization of fungus-specific histone deacetylase Hos3 provides insights into developing selective inhibitors with antifungal activity. Journal of Biological Chemistry 298(7): 102068. doi: 10.1016/j.jbc.2022.102068.
Pidroni, A., Faber, B., Brosch, G., Bauer, I. and Graessle, S. 2018. A class 1 histone deacetylase as a major regulator of secondary metabolite production in Aspergillus nidulans. Frontier in Microbiology 29: 2212. doi: 10.3389/fmicb.2018.02212.
Ranjan, K., Brandao, F.V., Morais, J., Muehlmann, L., Silva-Pereira, I., Bocca, A., Matos, L. and Pocas-Fonseca, M. 2021. The role of Cryptococcus neoformans histone deacetylase genes in the response to antifungal drugs, epigenetic modulators and to photodynamic therapy mediated by an aluminium phthalocyanine chloride nanoemulsion in vitro. Journal of Photochemistry and Photobiology 216: 112-131. doi: 10.1016/j.jphotobiol.2021.112131.
Reyes-Dominguez, Y., Boedi, S., Sulyok, M., Wiesenberger, G., Stoppacher, N., Krska, R. and Strauss, J. 2012. Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum. Fungal Genetics and Biology 49: 39-47. doi: 10.1016/j.fgb.2011.11.002.
Rezaeian Doloei, R., Rezaee, S., Mirabolfathy, M., Zamanizadeh, H., Razavi, M. and Karami-Osboo, R. 2015. Genetic analysis of Deoxynivalenol and Nivalenol chemotypes of Fusarium graminearum on wheat in Iran. Applied Entomology and Phytopathology 83(1): 1-11.
Sanches-Torres, P. 2021. Molecular mechanisms underlying fungicide resistance in Citrus Postharvest Green Mold. Journal of Fungi 7(9): 783. doi: 10.3390/jof7090783.
Song, H., Shen, R., Liu, X., Yang, X. and Xie, K. 2023. Histone post-translational modification and the DNA damage response. Genes and Diseases 10(4): 1429-1444. doi: 10.1016/j.gendis.2022.04.002.
Tamame, M., Antequera, F.R., Villanueva, J. and Santos, T. 1983. High-frequency conversion to a "Fluffy" developmental phenotype in Aspergillus spp. by 5-Azacytidine treatment: Evidence for involvement of a single nuclear gene. Molecular and Cellular Biology. 3(12): 2287-2297. doi: 10.1128/mcb.3.12.2287-2297.1983.
Untergrasser, A., Cutcutache, I., Koressaar, T., Ye, J.C., Faircloth, B., Remm, M.G. and Rosen, S. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Research 40(15): e115. doi: 10.1093/nar/gks596.
Villota-Salazar, N., Ramos-Garcia, V., Gonzales-Prieto, G. and Hernandez-Delgado, S. 2023. Effects of chemical inhibition of histone deacetylase proteins in the growth and virulence of Macrophomina phaseolina (Tassi) Goid. Revista Argentina de Microbiologia. 55(4): 296-306. doi: 10.1016/j.ram.2023.04.002.
Yao, G., Han, N., Zheng, H. and Wang, L. 2023. The histone deacetylase HstD regulates fungal growth, development, and secondary metabolite biosynthesis in Aspergillus terreus. International Journal of Molecular Science 24: 12569. doi:10.3390/ijms241612569.
Zhang, N., Yang, Z., Zhang, Z. and Liang, W. 2020. BcRPD3-mediated histone deacetylation is involved in growth and pathogenicity of Botrytis cinereal. Frontier in Microbiology 11: 1832. doi: 10.3389/Ffmicb.2020.01832.
Zutz, C., Gacek, A., Sulyok, M., Wanger, M., Strauss, J. and Rychli, K. 2013. Small chemical chromatin effectors alter secondary metabolite production in Aspergillus clavatus. Toxins 5: 1723-1741. doi: 10.3390/toxins5101723.