Deep eutectic solvent-based ultrasonic assisted extraction of polysaccharides and antioxidants from Astragalus hamosus L. seedpod
محورهای موضوعی : Natural Products: Isolation and CharacterizationReza Tabaraki 1 , Fariba Fatahi 2
1 - Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
2 - Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
کلید واژه: Astragalus hamosus L., Antioxidants, Deep eutectic solvent, Leguminosae, Polysaccharides, Ultrasonic assisted extraction, Response surface methodology,
چکیده مقاله :
In this study, the efficiency of various solvents and techniques was compared for the extraction of polysaccharides and antioxidants from Astragalus hamosus. Among twenty solvents and four extraction techniques, ultrasonic-assisted extraction using choline chloride-urea (a deep eutectic solvent, DES) demonstrated the best performance. Extraction variables were optimized by the response surface methodology (RSM), and Box-Behnken design (BBD). Extraction yield and total carbohydrate content (TCC) were 44.5% and 2.90 mgGlu/gdw, respectively. Rhamnose, mannose and galactose (molar ratio: 0.34:1.18:1.0) were major monosaccharides in the extracted polysaccharides. Six antioxidant assays—total phenolic content (TPC), total flavonoid content (TFC), DPPH assay, ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC), and reducing power assay (RPA)—were used to evaluate antioxidant capacity. Additionally, different extraction methods, including ultrasonic-assisted, microwave-assisted, maceration, and Soxhlet extractions were compared.
In this study, the efficiency of various solvents and techniques was compared for the extraction of polysaccharides and antioxidants from Astragalus hamosus. Among twenty solvents and four extraction techniques, ultrasonic-assisted extraction using choline chloride-urea (a deep eutectic solvent, DES) demonstrated the best performance. Extraction variables were optimized by the response surface methodology (RSM), and Box-Behnken design (BBD). Extraction yield and total carbohydrate content (TCC) were 44.5% and 2.90 mgGlu/gdw, respectively. Rhamnose, mannose and galactose (molar ratio: 0.34:1.18:1.0) were major monosaccharides in the extracted polysaccharides. Six antioxidant assays—total phenolic content (TPC), total flavonoid content (TFC), DPPH assay, ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC), and reducing power assay (RPA)—were used to evaluate antioxidant capacity. Additionally, different extraction methods, including ultrasonic-assisted, microwave-assisted, maceration, and Soxhlet extractions were compared.
Adelia, M., Samavati, V. (2015) Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus fruit. Int. J. Biol. Macromol. 72:580-587.
DOI: http://dx.doi.org/10.1016/j.ijbiomac.2014.08.047.
Al-Snafi, A.E., Esmail, A. (2015) Chemical constituents and pharmacological effects of Astragalus hamosus and Astragalus tribuloides grown in Iraq. Asian J. Pharm. Sci. Technol. 5(4):321-328.
Benvenutti, L., Zielinski A.A.F., Ferreira, S.R.S. (2022) Subcritical water extraction (SWE) modified by deep eutectic solvent (DES) for pectin recovery from a Brazilian berry by-product. J. Supercrit. Fluids 189:105729.
DOI: https://doi.org/10.1016/j.supflu.2022.105729.
Benzie, I.F., Strain, J.J. (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power the FRAP assay. Anal. Biochem. 239(1):70-76.
DOI: https://doi.org/10.1006/abio.1996.0292.
Bubalo, M.C., Ćurko, N., Tomašević, M., Ganić, K.K., Redovniković, I.R. (2016) Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 200:159-166.
DOI: https://doi.org/10.1016/j.foodchem.2016.01.040.
Chen, M., Lahaye, M. (2021) Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocoll. 115:106601.
DOI: https://doi.org/10.1016/j.foodhyd.2021.106601.
Dinis, A., Coutinho, J. (2022) Type V deep eutectic solvents: Design and applications. Curr. Opin. Green Sustain. Chem. 35:100612.
DOI: https://doi.org/10.1016/j.cogsc.2022.100612.
Duru, K.C., Slesarev, G.P., Aboushanab, S.A., Kovalev, I.S., Zeidler, D.M., Kovaleva, E.G., Bhat, R. (2022) An eco-friendly approach to enhance the extraction and recovery efficiency of isoflavones from kudzu roots and soy molasses wastes using ultrasound-assisted extraction with natural deep eutectic solvents (NADES). Ind. Crop Prod. 182:114886.
DOI: https://doi.org/10.1016/j.indcrop.2022.114886.
El Jabboury, Z., Bentaib, R., Stevanovic, Z.D., Ousaaid, D., Benjelloun, M., El Ghadraoui, L. (2023) Ammi visnaga (L.) Lam.: An overview of phytochemistry and biological functionalities. Trends Phytochem. Res. 7(3):141-155.
DOI: https://doi.org/10.30495/tpr.2023.1987739.1347.
Fatahi, F., Tabaraki, R. (2023) Deep eutectic solvent mediated extraction of polysaccharides and antioxidants from Persian Manna (Taranjabin): Comparison of different extraction methods and optimization by response surface methodology. Microchem. J. 194:109336.
DOI: https://doi.org/10.1016/j.microc.2023.109336.
Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandao, G.C., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S., dos Santos, W.N.L. (2007) Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 597(2):179-186.
DOI: https://doi.org/10.1016/j.aca.2007.07.011.
Guo, Y., Li, Y,, Li, Z., Yan, W., Chen, P., Yao, S. (2021) Extraction assisted by far infrared radiation and hot air circulation with deep eutectic solvent for bioactive polysaccharides from Poria cocos (Schw.) wolf. Green Chem. 23(18):7170-7192.
DOI: https://doi.org/10.1039/d1gc01773j.
Hakim, A., Tajuddin, A., Nasreen, J. (2010) Evaluation of anti-inflammatory activity of the pods of Iklil-ul-Malik (Astragalus hamosus Linn.). Indian J. Nat. Prod. Resour. 1(1):34-37.
Hamedi, A., Zarshenas, M.M., Sohrabpour, M. (2016) Phytochemical assessments of Astragalus hamosus pods (Iklil-Ul-Malik). Trends Pharmacol. Sci. 2(1):77-81.
Hassanzadeh-Taheri, M., Hosseini, M., Salimi, M., Moodi, H., Dorranipour, D. (2018) Acute and sub-acute oral toxicity evaluation of Astragalus hamosus seedpod ethanolic extract in wistar rats. Pharm. Sci. 24(1):23-30.
DOI: https://doi.org/10.15171/PS.2018.05.
Heydarian, M., Jooyandeh, H., Nasehi, B., Noshad, M. (2017) Characterization of Hypericum perforatum polysaccharides with antioxidant and antimicrobial activities: Optimization based statistical modeling. Int. J. Biol. Macromol. 104:287-293.
DOI: http://dx.doi.org/10.1016/j.ijbiomac.2017.06.049.
Jafari, Z., Ghani, M., Raoof, J.B. (2023) ZIF-8-90 @ graphene oxide reinforced porous hollow fiber coupled with deep eutectic solvent for hollow fiber solid-phase microextraction of selected phthalate esters followed by quantification through high-performance liquid chromatography-ultraviolet detection. Microchem. J. 194:109269.
DOI: https://doi.org/10.1016/j.microc.2023.109269.
Jooyandeh, H., Noshad, M., Amir Khamirian, R. (2018) Modeling of ultrasound-assisted extraction, characterization and in vitro pharmacological potential of polysaccharides from Vaccinium arctostaphylos L. Int. J. Biol. Macromol. 107:938-948.
DOI: https://doi.org/10.1016/j.ijbiomac.2017.09.077.
Kaoui, S., Chebli, B., Basai, K., Mir, Y. (2023) Deep eutectic solvents as sustainable extraction media for plants and food samples: A review. Sustain. Chem. Pharm. 1:100937.
DOI: https://doi.org/10.1016/j.scp.2022.100937.
Krasteva, L., Platikanov, S., Nikolov, S., Kaloga, M. (2007) Flavonoids from Astragalus hamosus. Nat. Prod. Res. 21(5):392-395.
DOI: https://doi.org/10.1080/14786410701236871.
Li, X., Row, K.H. (2016) Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 39(18):3505-3520.
DOI: https://doi.org/10.1002/jssc.201600633.
Liang, J., Zeng, Y., Wang, H., Lou, W. (2019) Extraction, purification and antioxidant activity of novel polysaccharides from Dendrobium officinale by deep eutectic solvents. Nat. Prod. Res. 33(22):3248-3253.
DOI: https://doi.org/10.1080/14786419.2018.1471480.
Liu, J., Li, X., Row, K.H. (2022) Development of deep eutectic solvents for sustainable chemistry. J. Mol. Liq. 362(15):119654.
DOI: https://doi.org/10.1016/j.molliq.2022.119654.
Mahmoodi, M., Ebrahimi–Barough, S., Kamian, S., Azami, M., Mehri, M., Abdi, M., Ai, J. (2022) Fabrication and characterization of a three-dimensional fibrin gel model to evaluate anti-proliferative effects of Astragalus hamosus plant extract on breast cancer cells. Asian Pac. J. Cancer Prev. 23(2):731.
DOI: https://dx.doi.org/10.31557/APJCP.2022.23.2.731.
Mohammadhosseini, M., Frezza, C., Venditti, A., Akbarzadeh, A. (2019) Ethnobotany and phytochemistry of the genus Eremostachys Bunge. Curr. Org. Chem. 23(17):1828-1842.
DOI: https://doi.org/10.2174/1385272823666191007161550.
Nafti, K., Giacinti, G., Marghali, S., Raynaud, C.D. (2022) Screening for Astragalus hamosus triterpenoid saponins using HPTLC methods: prior identification of azukisaponin isomers. Molecules 27(17):5376.
DOI: https://doi.org/10.3390/molecules27175376.
Oyaizu, M. (1986) Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 44(6):307-315.
DOI: http://dx.doi.org/10.5264/eiyogakuzashi.44.307.
Pierre Brat, G., Alter, P., Amiot, M.J. (2005) Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 53(5):1370-1373.
DOI: https://doi.org/10.1021/jf048396b.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9-10):1231-1237.
DOI: https://doi.org/10.1016/S0891-5849(98)00315-3.
Rostami, H., Gharibzahedi, S.M.T. (2016) Microwave-assisted extraction of jujube polysaccharide: Optimization, purification and functional characterization. Carbohydr. Polym. 143:100-107.
DOI: http://dx.doi.org/10.1016/j.carbpol.2016.01.075.
Sadeghi, Z., Alizadeh, Z., Moridi Farimani, M. (2024) Recent reports in the biggest herbal genus, Astragalus, in Iran; with a special viewpoint on tragacanth gum production. Nat. Prod. Res. 38(16):2877-2895.
DOI: https://doi.org/10.1080/14786419.2023.2232079.
Sahragard, N., Jahanbin, K. (2017) Structural elucidation of the main water-soluble polysaccharide from Rubus anatolicus roots. Carbohydr. Polym. 175:610-617.
DOI: https://doi.org/10.1016/j.carbpol.2017.08.042.
Shang, X.C., Chu, D., Zhang, J.X., Zheng, Y.F., Li, Y. (2021) Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents. Sep. Purif. Technol. 259:118169.
DOI: https://doi.org/10.1016/j.seppur.2020.118169.
Sharif, N., Jabeen, H. (2024) Natural sources for coumarins and their derivatives with relevance to health-promoting properties: A systematic review. Trends Phytochem. Res. 8(3):149-162.
DOI: https://doi.org/10.71596/tpr.2024.1103148.
Shkondrov, A., Krasteva, I. (2021) Liquid chromatography–high resolution mass spectrometry screening of Astragalus hamosus and Astragalus corniculatus. Pharmacia 1:135-140.
DOI: https://dx.doi.org/10.3897/pharmacia.68.e60621.
Shkondrov, A., Popova, P., Ionkova, I., Krasteva, I. (2021) Flavonoids in in vitro cultures of Astragalus hamosus. Pharmacia 68:927-931.
DOI: https://doi.org/10.3897/pharmacia.68.e76460.
Shojaii, A., Motaghinejad, M., Norouzi, S., Motevalian, M. (2015) Evaluation of anti-inflammatory and analgesic activity of the extract and fractions of Astragalus hamosus in animal models. Iranian J Pharm Res 14(1):263.
Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299:152-178.
DOI: https://doi.org/10.1016/S0076-6879(99)99017-1.
Tadayoni, M., Sheikh-Zeinoddin, M., Soleimanian-Zad, S. (2015) Isolation of bioactive polysaccharide from acorn and evaluation of its functional properties. Int. J. Biol. Macromol. 72:179-184.
DOI: http://dx.doi.org/10.1016/j.ijbiomac.2014.08.015.
Taylor, R.L., Conrad, H.E. (1972) Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl group. Biochem. 11(8):1383-1388.
DOI: https://doi.org/10.1021/bi00758a009.
Ustyuzhanina, N.E., Bilan, M.I., Dmitrenok, A.S., Tsvetkova, E.A., Shashkov, A.S., Stonik, V.A. (2016) Structural characterization of fucosylated chondroitin sulfates from sea cucumbers Apostichopus japonicas and Actinopyga mauritiana. Carbohydr. Polym. 153:399-405.
DOI: http://dx.doi.org/10.1016/j.carbpol.2016.07.076.
Wang, L., Yanan, W., Qi, B., Kan, S., Zhenqiang, W. (2017) Fingerprint profiles of flavonoid compounds from different Psidium guajava leaves and their antioxidant activities. J. Sep. Sci. 40(19):3817-3829.
DOI: https://doi.org/10.1002/jssc.20170047.
Wu, L., Li, L., Chen, S., Wang, L., Lin, X. (2020) Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 247:117014.
DOI: https://doi.org/10.1016/j.seppur.2020.117014.
Wu, L., Liu, Y., Qin, Y., Wang, L., Wu, Z. (2019) HPLC-ESI-qTOF-MS/MS characterization, antioxidant activities and inhibitory ability of digestive enzymes with molecular docking analysis of various parts of raspberry (Rubus ideaus L.). Antioxidants 8(8):274.
DOI: https://doi.org/10.3390/antiox808027.
Xinyu, Z., Su, J., Chu, X., Wang, X. (2022) A green method of extracting and recovering flavonoids from Acanthopanax senticosus using deep eutectic solvents. Molecules 27(3):923.
DOI: https://doi.org/10.3390/molecules27030923.
Zaib, Q., Masoumi, Z., Aich, N., Kyung, D. (2023) Review of the synthesis and applications of deep eutectic solvent-functionalized adsorbents for water treatment. J. Environm. Chem. Eng. 11(3):110214.
DOI: https://doi.org/10.1016/j.jece.2023.110214.
Zannou, O., Pashazadeh, H., Ibrahim, S.A., Koca, I., Galanakis, C.M. (2022) Green and highly extraction of phenolic compounds and antioxidant capacity from kinkeliba (Combretum micranthum G. Don) by natural deep eutectic solvents (NADESS) using maceration, ultrasound-assisted extraction and homogenate-assisted extraction. Arab. J. Chem. 15(5):103752.
DOI: https://doi.org/10.1016/j.arabjc.2022.103752.
Zhang, Q., De Oliveira Vigier, K., Royer, S., Jerome, F. (2012) Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 41:7108-7146.
DOI: https://doi.org/ 0.1039/c2cs35178a.
Zoghlami, A., Zouaghi, M. (2003) Morphological variation in Astragalus hamosus L. and Coronilla scorpioides L. populations of Tunisia. Euphytica 134:137–147.