Deep eutectic solvent-based ultrasonic assisted extraction of polysaccharides and antioxidants from Astragalus hamosus L. seedpod
Subject Areas : Natural Products: Isolation and CharacterizationReza Tabaraki 1 , Fariba Fatahi 2
1 -
2 -
Keywords: Astragalus hamosus L., Antioxidants, Deep eutectic solvent, Leguminosae, Polysaccharides, Ultrasonic assisted extraction, Response surface methodology,
Abstract :
In this study, the efficiency of various solvents and techniques was compared for the extraction of polysaccharides and antioxidants from Astragalus hamosus. Among twenty solvents and four extraction techniques, ultrasonic-assisted extraction using choline chloride-urea (a deep eutectic solvent, DES) demonstrated the best performance. Extraction variables were optimized by the response surface methodology (RSM), and Box-Behnken design (BBD). Extraction yield and total carbohydrate content (TCC) were 44.5% and 2.90 mgGlu/gdw, respectively. Rhamnose, mannose and galactose (molar ratio: 0.34:1.18:1.0) were major monosaccharides in the extracted polysaccharides. Six antioxidant assays—total phenolic content (TPC), total flavonoid content (TFC), DPPH assay, ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC), and reducing power assay (RPA)—were used to evaluate antioxidant capacity. Additionally, different extraction methods, including ultrasonic-assisted, microwave-assisted, maceration, and Soxhlet extractions were compared.
Adelia, M., Samavati, V. (2015) Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus fruit. Int. J. Biol. Macromol. 72:580-587.
DOI: http://dx.doi.org/10.1016/j.ijbiomac.2014.08.047.
Al-Snafi, A.E., Esmail, A. (2015) Chemical constituents and pharmacological effects of Astragalus hamosus and Astragalus tribuloides grown in Iraq. Asian J. Pharm. Sci. Technol. 5(4):321-328.
Benvenutti, L., Zielinski A.A.F., Ferreira, S.R.S. (2022) Subcritical water extraction (SWE) modified by deep eutectic solvent (DES) for pectin recovery from a Brazilian berry by-product. J. Supercrit. Fluids 189:105729.
DOI: https://doi.org/10.1016/j.supflu.2022.105729.
Benzie, I.F., Strain, J.J. (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power the FRAP assay. Anal. Biochem. 239(1):70-76.
DOI: https://doi.org/10.1006/abio.1996.0292.
Bubalo, M.C., Ćurko, N., Tomašević, M., Ganić, K.K., Redovniković, I.R. (2016) Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 200:159-166.
DOI: https://doi.org/10.1016/j.foodchem.2016.01.040.
Chen, M., Lahaye, M. (2021) Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocoll. 115:106601.
DOI: https://doi.org/10.1016/j.foodhyd.2021.106601.
Dinis, A., Coutinho, J. (2022) Type V deep eutectic solvents: Design and applications. Curr. Opin. Green Sustain. Chem. 35:100612.
DOI: https://doi.org/10.1016/j.cogsc.2022.100612.
Duru, K.C., Slesarev, G.P., Aboushanab, S.A., Kovalev, I.S., Zeidler, D.M., Kovaleva, E.G., Bhat, R. (2022) An eco-friendly approach to enhance the extraction and recovery efficiency of isoflavones from kudzu roots and soy molasses wastes using ultrasound-assisted extraction with natural deep eutectic solvents (NADES). Ind. Crop Prod. 182:114886.
DOI: https://doi.org/10.1016/j.indcrop.2022.114886.
El Jabboury, Z., Bentaib, R., Stevanovic, Z.D., Ousaaid, D., Benjelloun, M., El Ghadraoui, L. (2023) Ammi visnaga (L.) Lam.: An overview of phytochemistry and biological functionalities. Trends Phytochem. Res. 7(3):141-155.
DOI: https://doi.org/10.30495/tpr.2023.1987739.1347.
Fatahi, F., Tabaraki, R. (2023) Deep eutectic solvent mediated extraction of polysaccharides and antioxidants from Persian Manna (Taranjabin): Comparison of different extraction methods and optimization by response surface methodology. Microchem. J. 194:109336.
DOI: https://doi.org/10.1016/j.microc.2023.109336.
Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandao, G.C., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S., dos Santos, W.N.L. (2007) Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 597(2):179-186.
DOI: https://doi.org/10.1016/j.aca.2007.07.011.
Guo, Y., Li, Y,, Li, Z., Yan, W., Chen, P., Yao, S. (2021) Extraction assisted by far infrared radiation and hot air circulation with deep eutectic solvent for bioactive polysaccharides from Poria cocos (Schw.) wolf. Green Chem. 23(18):7170-7192.
DOI: https://doi.org/10.1039/d1gc01773j.
Hakim, A., Tajuddin, A., Nasreen, J. (2010) Evaluation of anti-inflammatory activity of the pods of Iklil-ul-Malik (Astragalus hamosus Linn.). Indian J. Nat. Prod. Resour. 1(1):34-37.
Hamedi, A., Zarshenas, M.M., Sohrabpour, M. (2016) Phytochemical assessments of Astragalus hamosus pods (Iklil-Ul-Malik). Trends Pharmacol. Sci. 2(1):77-81.
Hassanzadeh-Taheri, M., Hosseini, M., Salimi, M., Moodi, H., Dorranipour, D. (2018) Acute and sub-acute oral toxicity evaluation of Astragalus hamosus seedpod ethanolic extract in wistar rats. Pharm. Sci. 24(1):23-30.
DOI: https://doi.org/10.15171/PS.2018.05.
Heydarian, M., Jooyandeh, H., Nasehi, B., Noshad, M. (2017) Characterization of Hypericum perforatum polysaccharides with antioxidant and antimicrobial activities: Optimization based statistical modeling. Int. J. Biol. Macromol. 104:287-293.
DOI: http://dx.doi.org/10.1016/j.ijbiomac.2017.06.049.
Jafari, Z., Ghani, M., Raoof, J.B. (2023) ZIF-8-90 @ graphene oxide reinforced porous hollow fiber coupled with deep eutectic solvent for hollow fiber solid-phase microextraction of selected phthalate esters followed by quantification through high-performance liquid chromatography-ultraviolet detection. Microchem. J. 194:109269.
DOI: https://doi.org/10.1016/j.microc.2023.109269.
Jooyandeh, H., Noshad, M., Amir Khamirian, R. (2018) Modeling of ultrasound-assisted extraction, characterization and in vitro pharmacological potential of polysaccharides from Vaccinium arctostaphylos L. Int. J. Biol. Macromol. 107:938-948.
DOI: https://doi.org/10.1016/j.ijbiomac.2017.09.077.
Kaoui, S., Chebli, B., Basai, K., Mir, Y. (2023) Deep eutectic solvents as sustainable extraction media for plants and food samples: A review. Sustain. Chem. Pharm. 1:100937.
DOI: https://doi.org/10.1016/j.scp.2022.100937.
Krasteva, L., Platikanov, S., Nikolov, S., Kaloga, M. (2007) Flavonoids from Astragalus hamosus. Nat. Prod. Res. 21(5):392-395.
DOI: https://doi.org/10.1080/14786410701236871.
Li, X., Row, K.H. (2016) Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 39(18):3505-3520.
DOI: https://doi.org/10.1002/jssc.201600633.
Liang, J., Zeng, Y., Wang, H., Lou, W. (2019) Extraction, purification and antioxidant activity of novel polysaccharides from Dendrobium officinale by deep eutectic solvents. Nat. Prod. Res. 33(22):3248-3253.
DOI: https://doi.org/10.1080/14786419.2018.1471480.
Liu, J., Li, X., Row, K.H. (2022) Development of deep eutectic solvents for sustainable chemistry. J. Mol. Liq. 362(15):119654.
DOI: https://doi.org/10.1016/j.molliq.2022.119654.
Mahmoodi, M., Ebrahimi–Barough, S., Kamian, S., Azami, M., Mehri, M., Abdi, M., Ai, J. (2022) Fabrication and characterization of a three-dimensional fibrin gel model to evaluate anti-proliferative effects of Astragalus hamosus plant extract on breast cancer cells. Asian Pac. J. Cancer Prev. 23(2):731.
DOI: https://dx.doi.org/10.31557/APJCP.2022.23.2.731.
Mohammadhosseini, M., Frezza, C., Venditti, A., Akbarzadeh, A. (2019) Ethnobotany and phytochemistry of the genus Eremostachys Bunge. Curr. Org. Chem. 23(17):1828-1842.
DOI: https://doi.org/10.2174/1385272823666191007161550.
Nafti, K., Giacinti, G., Marghali, S., Raynaud, C.D. (2022) Screening for Astragalus hamosus triterpenoid saponins using HPTLC methods: prior identification of azukisaponin isomers. Molecules 27(17):5376.
DOI: https://doi.org/10.3390/molecules27175376.
Oyaizu, M. (1986) Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 44(6):307-315.
DOI: http://dx.doi.org/10.5264/eiyogakuzashi.44.307.
Pierre Brat, G., Alter, P., Amiot, M.J. (2005) Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 53(5):1370-1373.
DOI: https://doi.org/10.1021/jf048396b.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9-10):1231-1237.
DOI: https://doi.org/10.1016/S0891-5849(98)00315-3.
Rostami, H., Gharibzahedi, S.M.T. (2016) Microwave-assisted extraction of jujube polysaccharide: Optimization, purification and functional characterization. Carbohydr. Polym. 143:100-107.
DOI: http://dx.doi.org/10.1016/j.carbpol.2016.01.075.
Sadeghi, Z., Alizadeh, Z., Moridi Farimani, M. (2024) Recent reports in the biggest herbal genus, Astragalus, in Iran; with a special viewpoint on tragacanth gum production. Nat. Prod. Res. 38(16):2877-2895.
DOI: https://doi.org/10.1080/14786419.2023.2232079.
Sahragard, N., Jahanbin, K. (2017) Structural elucidation of the main water-soluble polysaccharide from Rubus anatolicus roots. Carbohydr. Polym. 175:610-617.
DOI: https://doi.org/10.1016/j.carbpol.2017.08.042.
Shang, X.C., Chu, D., Zhang, J.X., Zheng, Y.F., Li, Y. (2021) Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents. Sep. Purif. Technol. 259:118169.
DOI: https://doi.org/10.1016/j.seppur.2020.118169.
Sharif, N., Jabeen, H. (2024) Natural sources for coumarins and their derivatives with relevance to health-promoting properties: A systematic review. Trends Phytochem. Res. 8(3):149-162.
DOI: https://doi.org/10.71596/tpr.2024.1103148.
Shkondrov, A., Krasteva, I. (2021) Liquid chromatography–high resolution mass spectrometry screening of Astragalus hamosus and Astragalus corniculatus. Pharmacia 1:135-140.
DOI: https://dx.doi.org/10.3897/pharmacia.68.e60621.
Shkondrov, A., Popova, P., Ionkova, I., Krasteva, I. (2021) Flavonoids in in vitro cultures of Astragalus hamosus. Pharmacia 68:927-931.
DOI: https://doi.org/10.3897/pharmacia.68.e76460.
Shojaii, A., Motaghinejad, M., Norouzi, S., Motevalian, M. (2015) Evaluation of anti-inflammatory and analgesic activity of the extract and fractions of Astragalus hamosus in animal models. Iranian J Pharm Res 14(1):263.
Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299:152-178.
DOI: https://doi.org/10.1016/S0076-6879(99)99017-1.
Tadayoni, M., Sheikh-Zeinoddin, M., Soleimanian-Zad, S. (2015) Isolation of bioactive polysaccharide from acorn and evaluation of its functional properties. Int. J. Biol. Macromol. 72:179-184.
DOI: http://dx.doi.org/10.1016/j.ijbiomac.2014.08.015.
Taylor, R.L., Conrad, H.E. (1972) Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl group. Biochem. 11(8):1383-1388.
DOI: https://doi.org/10.1021/bi00758a009.
Ustyuzhanina, N.E., Bilan, M.I., Dmitrenok, A.S., Tsvetkova, E.A., Shashkov, A.S., Stonik, V.A. (2016) Structural characterization of fucosylated chondroitin sulfates from sea cucumbers Apostichopus japonicas and Actinopyga mauritiana. Carbohydr. Polym. 153:399-405.
DOI: http://dx.doi.org/10.1016/j.carbpol.2016.07.076.
Wang, L., Yanan, W., Qi, B., Kan, S., Zhenqiang, W. (2017) Fingerprint profiles of flavonoid compounds from different Psidium guajava leaves and their antioxidant activities. J. Sep. Sci. 40(19):3817-3829.
DOI: https://doi.org/10.1002/jssc.20170047.
Wu, L., Li, L., Chen, S., Wang, L., Lin, X. (2020) Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 247:117014.
DOI: https://doi.org/10.1016/j.seppur.2020.117014.
Wu, L., Liu, Y., Qin, Y., Wang, L., Wu, Z. (2019) HPLC-ESI-qTOF-MS/MS characterization, antioxidant activities and inhibitory ability of digestive enzymes with molecular docking analysis of various parts of raspberry (Rubus ideaus L.). Antioxidants 8(8):274.
DOI: https://doi.org/10.3390/antiox808027.
Xinyu, Z., Su, J., Chu, X., Wang, X. (2022) A green method of extracting and recovering flavonoids from Acanthopanax senticosus using deep eutectic solvents. Molecules 27(3):923.
DOI: https://doi.org/10.3390/molecules27030923.
Zaib, Q., Masoumi, Z., Aich, N., Kyung, D. (2023) Review of the synthesis and applications of deep eutectic solvent-functionalized adsorbents for water treatment. J. Environm. Chem. Eng. 11(3):110214.
DOI: https://doi.org/10.1016/j.jece.2023.110214.
Zannou, O., Pashazadeh, H., Ibrahim, S.A., Koca, I., Galanakis, C.M. (2022) Green and highly extraction of phenolic compounds and antioxidant capacity from kinkeliba (Combretum micranthum G. Don) by natural deep eutectic solvents (NADESS) using maceration, ultrasound-assisted extraction and homogenate-assisted extraction. Arab. J. Chem. 15(5):103752.
DOI: https://doi.org/10.1016/j.arabjc.2022.103752.
Zhang, Q., De Oliveira Vigier, K., Royer, S., Jerome, F. (2012) Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 41:7108-7146.
DOI: https://doi.org/ 0.1039/c2cs35178a.
Zoghlami, A., Zouaghi, M. (2003) Morphological variation in Astragalus hamosus L. and Coronilla scorpioides L. populations of Tunisia. Euphytica 134:137–147.