ارزیابی تاثیر عوامل اقلیمی و غیر اقلیمی بر تولید غلات: شواهد تجربی از ایران
محورهای موضوعی : فصلنامه علمی -پژوهشی تحقیقات اقتصاد کشاورزیابوالفضل دیلمی 1 , رامتین جولایی 2
1 - فارغ التحصیل کارشناسی ارشد گروه اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2 - دانشیار گروه اقتصاد کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
کلید واژه: تولید غلات, عوامل اقلیمی, انتشار دی¬اکسید کربن, اعتبارات کشاورزی,
چکیده مقاله :
مقدمه و هدف: تولید و مصرف غلات به صورت پایدار، انعطافپذیری و استقلال بیشتری را در تأمین امنیت غذایی فراهم میکند. از این رو، توجه به توسعه کشاورزی در زمینه تولید غلات به منظور تأمین نیازهای غذایی جوامع بسیار ضروری است. با این حال، تغییرات اقلیمی و عوامل غیر اقلیمی، چالشهایی را برای حفظ و افزایش تولید غلات ایجاد کردهاند.
مواد و روشها: تحقیق حاضر با استفاده از روش ARDL و با بررسی دوره زمانی 2020-1990، به ارزیابی تأثیر عوامل اقلیمی (دما، بارش و انتشار دیاکسید کربن) و غیر اقلیمی (اعتبارات بخش کشاورزی، سطح زیر کشت غلات و مصرف کودهای شیمیایی) بر تولید غلات در ایران پرداخته است.
یافته ها: رویکرد آزمونهای کرانههای ARDL یک رابطه همانباشتگی بلندمدت معتبر بین متغیرها را تأیید کردند. نتایج حاصل از تحقیق نشان میدهد که افزایش دما و بارش میتواند باعث افزایش تولید غلات شود، در حالی که انتشار CO2 باعث کاهش تولید غلات میگردد. همچنین، اعتبارات بخش کشاورزی، سطح زیر کشت غلات و مصرف کودهای شیمیایی نیز تأثیر مثبتی بر تولید غلات دارند.
بحث و نتیجه گیری: سیاستگذاریهایی که به منظور حمایت از بخش کشاورزی و جذب سرمایه در این حوزه طراحی میشوند، از اهمیت بالایی برخوردارند و افزایش اعتبارات تخصیص یافته به بخش کشاورزی و تشویق به گسترش سطح زیر کشت غلات میتواند به افزایش تولید غلات در ایران منجر شود. همچنین، جهت سازگاری با تغییرات اقلیمی، باید به جوامع کشاورز اطلاعاتی در مورد تأثیرات این تغییرات و راهکارهای مقابله با آنها ارائه شود تا بتوانند با این چالش مواجه شوند.
Introduction: Ensuring food security and maintaining and increasing food production in Iran, as one of the main goals of agricultural policies, are of great importance. However, climate change and non-climatic factors pose challenges to maintaining and increasing cereal production.
Materials and Methods: The present study evaluates the impact of climatic factors (temperature, precipitation, and carbon dioxide emissions) and non-climatic factors (agricultural credits, land under cereal production, and fertilizer consumption) on cereal production in Iran using the ARDL approach by examining the time period of 1990-2020.
Findings: The ARDL Bound test, confirms a valid long-term relationship between the variables. The results of the study show that an increase in temperature and precipitation can lead to an increase in cereal production, while CO2 emissions lead to a decrease in cereal production. Moreover, agricultural credits, land under cereal production, and fertilizer consumption also have a positive impact on cereal production.
Conclusion: The policies designed to support the agricultural sector and attract investment in this area are of great importance. Increasing the allocation of credits to the agricultural sector, encouraging the expansion of cereal cultivation, and the use of improved seeds can lead to an increase in productivity and cereal production in Iran. Also, in order to adapt to climate change, agricultural communities need to be provided with information about its impacts and mitigation measures so that they can face these challenges and increase agricultural productivity by utilizing the positive potential created.
1. Agbodji AE, Johnson AA. Agricultural Credit and Its Impact on the Productivity of Certain Cereals in Togo. Emerging Markets Finance and Trade. 2021;57(12):3320-3336.
doi: 10.1080/1540496X.2019.1602038.
2. Ahmad S, Tariq M, Hussain T, Abbas Q, Elham H, Haider I, Li X. Does Chinese FDI, climate change, and CO2 emissions stimulate agricultural productivity? Empirical evidence from Pakistan. Sustainability. 2020;12(18):7485. doi: 10.3390/su12187485.
3. Ahsan F, Chandio AA, Fang W. Climate change impacts on cereal crops production in Pakistan: Evidence from cointegration analysis. International Journal of Climate Change Strategies and Management.2020;12(2):257-269.
doi: 10.1108/IJCCSM-04-2019-0020.
4. Akmal N, Rehman B, Ali A, Shah H. The impact of agriculture credit on growth in Pakistan. Asian J Agric Rural Dev. 2012;2. doi: 10.22004/ag.econ.198003.
5. Amirnejad H, Asadpour kordi M. Effects of Climate Change on Wheat Production in Iran. Agricultural Economics Research. 2017; 9(35): 163-182. https://dorl.net/dor/20.1001.1.20086407.1396.9.35.9.8.
6. Ammani A, Ja’Afaru A, Aliyu J, Arab A. Climate change and maize production: empirical evidence from Kaduna State, Nigeria. Journal of Agricultural Extension. 2012;16(1). doi: 10.4314/jae.v16i1.1.
7. Anetor F, Ogbechie C, Kelikume I, Ikpesu F. Credit supply and agricultural production in Nigeria: a vector autoregressive (VAR) approach. Journal of Economics and Sustainable Development. 2016;7(2). [https://ssrn.com/abstract=2735124].
8. Bouznit M, Pablo-Romero M. CO2 emissions and economic growth in Algeria. Journal of Energy Policy. 2016; 96:93-104. doi: 10.1016/j.enpol.2016.05.036.
9. Brown B, Llewellyn R, Nuberg I. Global learnings to inform the local adaptation of conservation agriculture in Eastern and Southern Africa. Global Food Security. 2018; 17:213–220.
doi: 10.1016/j.gfs.2018.05.002.
10. Brown RL, Durbin J, Evans JM. Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society. Series B (Methodological). 1975;37(2):149-192. doi: 10.1111/j.2517-6161. 1975.tb01532.
11. CCKP (Climate Change Knowledge Portal). 2020; https://climateknowledgeportal.worldbank.org/
12. Central Bank of Iran, 2021. https://tsd.cbi.ir/DisplayEn/Content.aspx.
13. Chai R, Ye X, Ma C, Wang Q, Tu R, Zhang L, Gao H. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance Manage. 2019; 14:20. [https://doi.org/10.1186/s13021-019-0133-9].
14. Chandio AA, Gokmenoglu KK, Ahmad F. Addressing the long- and short-run effects of climate change on major food crops production in Turkey. Environ Sci Pollut Res. 2021b; 28:51657–51673. [https://doi.org/10.1007/s11356-021-14358-8].
15. Chandio AA, Gokmenoglu KK, Ahmad M, Jiang Y. Towards sustainable rice production in Asia: the role of climatic factors. Earth Syst Environ. 2022a; 6:1–14. [https://doi.org/10.1007/s41748-021-00210-z].
16. Chandio AA, Jiang Y, Ahmad M, Adhikari S, Ul Ain Q. Assessing the impacts of climatic and technological factors on rice production: Empirical evidence from Nepal. Technol Soc. 2021c; 66:101607. [https://doi.org/10.1016/j.techsoc.2021.101607].
17. Chandio AA, Jiang Y, Akram W, Adeel S, Irfan M, Jan I. Addressing the effect of climate change in the framework of financial and technological development on cereal production in Pakistan. J Clean Prod.2021a;288:125637. [https://doi.org/10.1016/j.jclepro.2020.125637].
18. Chandio AA, Jiang Y, Amin A, Ahmad M, Akram W, Ahmad F. Climate change and food security of South Asia: fresh evidence from a policy perspective using novel empirical analysis. J Environ Plan Manag. 2022b;66(1):169-190. [https://doi.org/10.1080/09640568.2021.1980378].
19. Chandio AA, Jiang Y, Rauf A, Ahmad F, Amin W, Shehzad K. Assessment of formal credit and climate change impact on agricultural production in Pakistan: a time series ARDL modeling approach. Sustainability.2020;12(13):5241. [https://doi.org/10.3390/su1213524].
20. Chandio AA, Jiang Y, Rehman A. Credit margin of investment in the agricultural sector and credit fungibility: the case of smallholders of district Shikarpur, Sindh, Pakistan. Financial Innovation. 2018; 4:27. (https://doi.org/10.1186/s40854-018-0109-x.)
21. Chhogyel N, Kumar L. Climate change and potential impacts on agriculture in Bhutan: A discussion of pertinent issues. Agric Food Secur. 2018; 7:79. [https://doi.org/10.1186/s40066-018-0229-6].
22. Conelly WT, Chaiken MS. Intensive farming, agro-diversity, and food security under conditions of extreme population pressure in western Kenya. Hum Ecol. 2000; 28:19–51.
[https://doi.org/10.1023/A:100707562100].
23. Crespo O, Hachigonta S, Tadross M. Sensitivity of southern African maize yields to the definition of sowing dekad in a changing climate. Climatic Change. 2011;106(2):267–283. [https://doi.org/10.1007/s10584-010-9924-4].
24. Dar JA, Asif M. Do agriculture-based economies mitigate CO2 emissions? Empirical evidence from five SAARC countries. Int J Energy Sect Manag. 2019;14(3):638–652. [https://doi.org/10.1108/IJESM-01-2019-0011].
25. Das MR, Hossain MA. Impact of agricultural loan disbursement and chemical fertilizer use on the rice production in Bangladesh. Bangladesh J Public Adm. 2019;27(2):84-96. [https://doi.org/10.36609/bjpa.v27i2.69].
26. Downing TE. Climate change and vulnerable places: Global food security and country studies in Zimbabwe, Senegal and Chile: Kenya. Oxford: University of Oxford, Environmental Change Unit; 1992.
27. Dubey SK, Sharma D. Assessment of climate change impact on yield of major crops in the Banas River Basin, India. Sci Total Environ. 2018; 635:10–19. [https://doi.org/10.1016/j.scitotenv.2018.03.343].
28. Edame GE, Ekpenyong A, Fonta WM, Duru E. Climate change, food security and agricultural productivity in Africa: Issues and policy directions. Int J Humanit Soc Sci. 2011;1(21):205–223.
29. Enete AA, Amusa TA. Challenges of agricultural adaptation to climate change in Nigeria: a synthesis from the literature. Field Actions Science Reports, The Journal of Field Actions 2010;4.http://journals.openedition.org/factsreports/678)..
30. Estes LD, Beukes H, Bradley BA, Debats SR, Oppenheimer M, Ruane AC, Tadross M. Projected climate impacts to South African maize and wheat production in 2055: A comparison of empirical and mechanistic modeling approaches. Global Change Biology. 2013;19(12). doi: 10.1111/gcb.12325.
31. FAO, Ifad, WFP. The state of food insecurity in the world 2014: Strengthening the enabling environment for food security and nutrition. Rome: FAO; 2014.
32. Feiziasl V, Jafarzadeh J, Abdolrahmani B, Mosavi S, Karimi E. Studies on the Effects of Climatic Factors on Dryland Wheat Grain Yield in Maragheh Region. Iranian Journal of Field Crops Research, 2010; 8(1): 1-11. doi: 10.22067/gsc. v8i1.7384.
33. Food and Agriculture Organization. The State of Food and Agriculture Climate Change, Agriculture and Food Security. Rome, Italy: Food and Agriculture Organization, United Nations; 2016.
34. Ford JD, Berrang-Ford L. Climate change adaptation in developed nations: From theory to practice. Berlin: Springer; 2011. doi: 10.1007/978-94-007-0567-8.
35. Gornall J, Betts R, Burke EJ, Clark RT, Camp J, Willett KM, Wiltshire A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc B. 2010; 365:2973–2989. doi: 10.1098/rstb.2010.0158.
36. Guiteras R. The impact of climate change on Indian agriculture. Manuscript, Department of Economics, University of Maryland, College Park, Maryland; 2009.
37. Gul A, Chandio AA, Siyal SA, Rehman A, Xiumin W. How climate change is impacting the major yield crops of Pakistan? An exploration from long- and short-run estimation. Environ Sci Pollut Res. 2022a ;29:26660–26674. doi: 10.1007/s11356-021-17579-z.
38. Gul A, Xiumin W, Chandio AA, Rehman A, Siyal SA, Asare I. Tracking the effect of climatic and nonclimatic elements on rice production in Pakistan using the ARDL approach. Environ Sci Pollut Res. 2022b; 29:31886–31900. doi: 10.1007/s11356-022-18541-3.
39. Guntukula R. Assessing the impact of climate change on Indian agriculture: evidence from major crop yields. J Publ Aff. 2020;20(1). doi: 10.1002/pa.2040.
40. Hejazi J, Emamgholipour S. The Effects of the Re-imposition of US Sanctions on Food Security in Iran. Int J Health Policy Manag. 2020;9(8):356-358. doi: 10.34172/ijhpm.2020.207.
41. Hillier J, Hawes C, Squire G, Hilton A, Wale S, Smith P. The carbon footprints of food crop production. Int J Agric Sustain. 2009;7(2):107-118. doi: 10.3763/ijas.2009.0419.
42. Hossain MS, Qian L, Arshad M, Shahid S, Fahad S, Akhter J. Climate change and crop farming in Bangladesh: an analysis of economic impacts. Int J Clim Chang Strat Manag. 2019;11(3):424-440. doi: 10.1108/IJCCSM-04-2018-0030.
43. Hui L, Feng WT, He XH, Zhu P, Gao HJ, Sun N, Xu MG. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. J Integr Agric. 2017;16(4):937-946.
doi: 10.1016/S2095-3119(16)61559-9.
44. Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess. 2020;192(1):48. doi: 10.1007/s10661-019-7956-4.
45. Hussain SS, Mudasser M. Prospects for wheat production under changing climate in mountain areas of Pakistan - an econometric analysis. Agric Syst. 2007;94(2):494-501. doi: 10.1016/j.agsy.2006.12.001.
46. Keane J, Page S, Kergna A, Kennan J. Climate change and developing country agriculture: an overview of expected impacts, adaptation and mitigation challenges, and funding requirements. Issue Brief. 2009; 2:1-49.
47. Khaleghi S, Bazazan F, Madani Sh. The Effects of Climate Change on Agricultural Production and Iranian Economy. Agricultural Economics Research. 2015; 7(25); 113-135. https://dorl.net/dor/20.1001.1.20086407.1394.7.25.6.1.
48. Khan A, Ali S, Shah SA, Khan A, Ullah R. Impact of climate change on maize productivity in Khyber Pakhtunkhwa, Pakistan. Sarhad J Agric. 2019;35(2):594-601.
doi: 10.17582/journal.sja/2019/35.2.594.601.
49. Kiani S, Shahraki J, Akbari A, Sardar Shahraki A. The Effect of Climate Change on Iran's Agricultural Production: A Case Study of Wheat Crop. Applied Field Crops Research, 2020; 32(04): 109-127. doi: 10.22092/aj.2019.123143.1337.
50. King RG, Levine R. Finance, entrepreneurship and growth. J Monet Econ. 1993;32(3):513-542. doi: 10.1016/0304-3932(93)90028-E.
51. Koocheki A, Kamali G. Climate Change and Rainfed Wheat Production in Iran. Iranian Journal of Field Crops Research, 2010; 8(3): 508-520. doi: 10.22067/gsc. v8i3.7770.
52. Koondhar MA, Aziz N, Tan Z, Yang S, Abbasi KR, Kong R. Green growth of cereal food production under the constraints of agricultural carbon emissions: A new insights from ARDL and VECM models. Sustain Energy Technol Assess. 2021; 47:101452. doi: 10.1016/j.seta.2021b.101452.
53. Koondhar MA, Udemba EN, Cheng Y, Khan ZA, Koondhar MA, Batool M, Kong R. Asymmetric causality among carbon emission from agriculture, energy consumption, fertilizer, and cereal food production–A nonlinear analysis for Pakistan. Sustain Energy Technol Assess. 2021a; 45:101099. doi: 10.1016/j.seta.2021.101099.
54. Kusin FM, Izzati Mat Akhir N, Mahamat-Yusuff F, Auang M. The impact of nitrogen fertilizer uses on greenhouse gas emissions in an oil palm plantation associated with land use change. Atmosfera. 2015;28(4):243-250.
doi: 10.20937/ATM.2015.28.04.03.
55. Lin HI, Ya-Yin Y, Fang-I W, Po-Ting L. Status of food security in east and Southeast Asia and challenges of climate change. Climate. 2022;10(3):40. doi: 10.3390/cli10030040.
56. Lin W, Lin M, Zhou H, Wu H, Li Z, Lin W. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS One. 2019;14(5):e0217018.
doi: 10.1371/journal.pone.0217018.
57. Mahrous W. Dynamic impacts of climate change on cereal yield in Egypt: An ARDL model. J Econ Financial Res. 2018;5(1):886-908.
58. Nakano Y, Magezi EF. The impact of microcredit on agricultural technology adoption and productivity: evidence from randomized control trial in Tanzania. World Dev. 2020; 133:104997.
doi: 10.1016/j.worlddev.2020.104997.
59. Nasrullah M, Rizwanullah M, Yu X, Jo H, Sohail MT, Liang L. Autoregressive distributed lag (ARDL) approach to study the impact of climate change and other factors on rice production in South Korea. J Water Clim Change. 2021;12(6):2256-2270. doi: 10.2166/wcc.2021.030.
60. Nuwagaba A, Namateefu LK. Climatic change, land use and food security in Uganda: A survey of Western Uganda. J Earth Sci Geotechn Eng. 2013;3(2):61-72.
61. Nwaka ID, Nwogu MU, Uma KE, Ike GN. Agricultural production and CO2 emissions from two sources in the ECOWAS region: new insights from quantile regression and decomposition analysis. Sci Total Environ. 2020; 748:141329.
doi: 10.1016/j.scitotenv.2020.141329.
62. Omoregie K, Ikpesu F, Okpe AE. Credit supply and rice output in Nigeria: empirical insight from vector error correction model approach. Int J Econ Financ. 2018;8(5):68-74. doi: 10.5539/ijef. v8n5p68.
63. Parkes B, Sultan B, Ciais P. The impact of future climate change and potential adaptation methods on Maize yields in West Africa. Clim Change. 2018;151(2):205-217. doi: 10.1007/s10584-018-2290-3.
64. Pesaran MH, Shin Y, Smith RJ. Bounds testing approaches to the analysis of level relationships. J Appl Econom. 2001;16(3):289-326.
doi: 10.1002/jae.616.
65. Pesaran MH, Shin Y. An autoregressive distributed-lag modelling approach to cointegration analysis. Econ Soc Monogr. 1998; 31:371-413.
66. Pickson RB, He G, Ntiamoah EB, Li C. Cereal production in the presence of climate change in China. Environ Sci Pollut Control Ser. 2020; 27:45802-45813. doi: 10.1007/s11356-020-10430-x.
67. Praveen B, Sharma. A review of literature on climate change and its impacts on agriculture productivity. J Publ Aff. 2019;19(4). doi: 10.1002/pa.1960.
68. Radmehr R, Henneberry SR. Energy price policies and food prices: empirical evidence from Iran. Energy Policy Policy Implications. 2020;13(15). doi: 10.3390/en13154031.
69. Raifu IA, Aminu A. Financial development and agricultural performance in Nigeria: what role do institutions play? Agric Finance Rev. 2019;80(2):231-254. doi: 10.1108/AFR-06-2018-0045.
70. Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S. Climate change has likely already affected global food production. PLoS One. 2019;14(5). doi: 10.1371/journal.pone.0217148.
71. Rehman A, Chandio AA, Hussain I, Jingdong L. Fertilizer consumption, water availability and credit distribution: major factors affecting agricultural productivity in Pakistan. J Saudi Soc Agric Sci. 2019;18(3). doi: 10.1016/j.jssas.2017.08.002.
72. Reidsma P, Lansink A, Ewert F. Economic impacts of climatic variability and subsidies on european agriculture and observed adaptation strategies. J Mitig Adapt Strateg Glob Change. 2009; 14:35-59. doi: 10.1007/s11027-008-9149-2.
73. Saqib SE, Ahmad MM, Panezai S. Landholding size and farmers’ access to credit and its utilization in Pakistan. Dev Pract. 2016;26(8).
doi: 10.1080/09614524.2016.1227301.
74. Sarkodie SA, Ntiamoah EB, Li D. Panel heterogeneous distribution analysis of trade and modernized agriculture on CO2 emissions: the role of renewable and fossil fuel energy consumption. Nat Resour Forum. 2019; 43:135-153. doi: 10.1111/1477-8947.12183.
75. Schmidhuber J, Tubiello FN. Global food security under climate change. Proc Natl Acad Sci USA. 2007;104(50):19703-19708. doi: 10.1073/pnas.0701976104.
76. Shahbaz M, Shabbir MS, Butt MS. Effect of financial development on agricultural growth in Pakistan: new extensions from bounds test to level relationships and Granger causality tests. Int J Soc Econ. 2013;40(8):707-728. doi: 10.1108/IJSE-01-2012-0002.
77. Shahraki J, Sabouhi Sabouni M, Yaghoubi M. The impacts of climate change on wheat production: A Stochastic production function approach. Journal of Natural Environmental Hazards. 2017; 6(11): 69-84. doi: 10.22111/jneh.2017.3074.
78. Slingo JM, Challinor AJ, Hoskins BJ, Wheeler TR. Introduction: food crops in a changing climate. Philos Trans R Soc B Biol Sci. 2005;360(1463):1983-1989. doi: 10.1098/rstb.2005.1755.
79. Sossou S, Igue CB, Diallo M. Impact of climate change on cereal yield and production in the Sahel: case of Burkina Faso. Asian J Agric Ext Econ Sociol. 2019;37(4):2320-7027.
doi: 10.9734/AJAEES/2019/v37i430288.
80. Statistical Center of Iran,2022. https://www.amar.org.ir/.
81. UN (United Nations (, IRAN COUNTRY RESULTS REPORT, 2019.
82. Van Oort PA, Zwart SJ. Impacts of climate change on rice production in Africa and causes of simulated yield changes. Glob Chang Biol. 2018;24(3):1029-1045. doi: 10.1111/gcb.13967.
83. Waheed R, Chang D, Sarwar S, Chen W. Forest, agriculture, renewable energy, and CO2 emission. J Clean Prod. 2018; 172:4231-4238. doi: 10.1016/j.jclepro.2017.10.287.
84. Warsame AA, Sheik-Ali IA, Ali AO, et al. Climate change and crop production nexus in Somalia: empirical evidence from ARDL technique. Environ Sci Pollut Res. 2021; 28:19838-19850. doi: 10.1007/s11356-020-11739-3.
85. World Development Indicator (WDI). The World Bank Databank. The World Bank groups, Washington, DC; 2022.
86. Wreford AB, Moran D, Moxey A, Evans KA, Fox N, Glenk K, Hutchings M, McCracken DI, McVittie A, Mitchell M, Topp CFE, Wall E. Estimating the costs and benefits of adapting agriculture to climate change. Agricultural Economics Society and European Association of Agricultural Economists (EAAE). 2015;14(2). doi: 10.1111/1746-692X.12086
87. Xiang X, Solaymani S. Change in cereal production caused by climate change in Malaysia. 2022. Ecological Informatics, 70,101741, https://doi.org/10.1016/j.ecoinf.2022.101741.
88. Ye L, Zhao X, Bao E, Li J, Zou Z, Cao K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci Rep. 2020;10(1). doi: 10.1038/s41598-019-56954-2.
89. Yesuf M, Di Falco S, Deressa T, Ringler C, Kohlin G. The impact of climate change and adaptation on food production in low-income countries: evidence from the Nile Basin, Ethiopia. IFPRI discussion papers 828, International Food Policy Research Institute (IFPRI); 2008.
90. Zaied YB, Cheikh NB. Long-run versus short-run analysis of climate change impacts on agricultural crops. Environ Model Assess. 2015;20(3):259-271. doi: 10.1007/s10666-014-9432-4.
91. Zakaria M, Jun W, Khan MF. Impact of financial development on agricultural productivity in South Asia. Agric Econ. 2019;65(5):232-239. doi: 10.17221/199/2018-AGRICECON.
92. Zewdie A. Impacts of climate change on food security: A literature review in Sub Saharan Africa. Journal of Earth Science & Climatic Change. 2014;5(8). doi: 10.4172/2157-7617.1000225.
93. Zhai S, Song G, Qin Y, Ye X, Lee J. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: an autoregressive distributed lag approach. PloS One. 2017;12(9). doi: 10.1371/journal.pone.0184474.
94. Zhou X-Y, Lu G, Xu Z, Yan X, Khu S-T, Yang J, Zhao J. Influence of Russia-Ukraine War on the Global Energy and Food Security. Resources, Conservation & Recycling. 2023; 188:106657. doi: 10.1016/j.resconrec.2022.106657
95. Zulfiqar F, Shang J, Nasrullah M, Rizwanullah M. Allocative efficiency analysis of wheat and cotton in district Khanewal, Punjab, Pakistan. GeoJournal. 2022; 86:2777-2786. doi: 10.1007/s10708-020-10228-x