A remark on some inequalities for positive linear maps
محورهای موضوعی : Linear and multilinear algebra; matrix theory
1 - Department of Mathematics, Payame Noor University, Tehran, Iran
2 - Department of Mathematics, Payame Noor University, Tehran, Iran
کلید واژه: Convex function, $s$-convex function, matrix $s$-convex function, $P$-class function, Jensen's inequality,
چکیده مقاله :
The objective of this paper is to reveal that an analogue of Jensen's inequality holds for positive unital linear maps and matrix $s$-convex functions. We prove that the restriction to the matrix $s$-convex functions is not necessary in the case of $2 \times 2$ matrices in some sense.
The objective of this paper is to reveal that an analogue of Jensen's inequality holds for positive unital linear maps and matrix $s$-convex functions. We prove that the restriction to the matrix $s$-convex functions is not necessary in the case of $2 \times 2$ matrices in some sense.
[1] R. Bhatia, R. Sharma, Some inequalities for positive linear maps, Linear Alg. Appl. 436 (2012), 1562-1571.
[2] M. D. Choi, A schwarz inequality for positive linear maps on C∗-algebra, Illinois J. Math. 18 (1974), 565-574.
[3] V. Darvish, S. S. Dragomir, H. M. Nazari, A. Taghavi, Some inequalities associated with the Hermite-Hadamard inequalities for operator h-convex functions, Acta Comment. Univ. Tartu. Math. 21 (2017), 287-297.
[4] C. Davis, A Schwarz inequality for convex operator functions, Proc. Amer. Math. Soc. 8 (1957), 42-44.
[5] T. H. Dinh, K. T. B. Vo, Some inequalities for operator (p,h)-convex functions, Linear Multilinear Alg. 66 (3) (2017), 580-592.
[6] S. S. Dragomir, S. Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math. 32 (4) (1999), 687-696.
[7] S. S. Dragomir, Th. M. Rassias, Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
[8] A. G. Ghazanfari, The Hermite-Hadamard type inequalities for operator s-convex functions, J. Adv. Res. Pure Math. 6 (3) (2014), 52-61.
[9] U. S. Kirmaci, M. Klaricic Bakula, M. E.Özdemir, J. Pecaric, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), 26-35.
[10] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 17 (1994), 100-111.
[11] I. Nikoufar, D. Saeedi, An operator version of the Jensen inequality for s-convex functions, Complex Anal. Oper. Theory 15 (2021), 15:92.
[12] I. Nikoufar, D. Saeedi, Operator inequalities associated with the Kantrovich type inequalities for s-convex functions, Indian J. Pure Appl. Math. 54 (2023), 1268-1277.
[13] I. Nikoufar, D. Saeedi, Some inequalities for P-class functions, Filomat 34 (13) (2020), 4555-4566.
[14] M. A. Noor, K. I. Noor, M. Th. Rassias, New trends in general variational inequalities, Acta. Appl. Math. 170 (1) (2020), 981-1064.
[15] M. R. Pinheiro, Exploring the concept of s-convexity, Aequationes Math. 74 (2007), 201-209.
[16] W. F. Stinespring, Positive functions on C∗-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.
[17] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl. 63 (2012), 1147-1154.