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Abstract. The objective of this paper is to reveal that an analogue of Jensen’s inequality
holds for positive unital linear maps and matrix s-convex functions. We prove that the re-
striction to the matrix s-convex functions is not necessary in the case of 2 × 2 matrices in
some sense.
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1. Introduction

It is well known that a function f : J → R, J ⊆ R is called convex whenever f(λx+(1−
λ)y) ⩽ λf(x)+(1−λ)f(y) holds for all x, y ∈ J and λ ∈ [0, 1], and the function f : J → R
is concave whenever −f is convex. The convexity of functions plays a significant role in
many fields, such as in economy, probability and optimization.

A function f : [0,∞) → R is s-convex (the second sense) whenever

f(λx+ (1− λ)y) ⩽ λsf(x) + (1− λ)sf(y) (1)

holds for all x, y ∈ [0,∞) and λ ∈ [0, 1], and for some fixed s ∈ (0, 1].
The class of s-convex functions in the second sense was defined in [10] and it was proved

that all s-convex functions in the second sense are nonnegative. There is an identity
between the class of 1-convex functions and the class of nonnegative convex functions.
Indeed, the s-convexity means just the convexity when s = 1. Moreover, when s → 0
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we reach another rich class of functions the so-called P -class functions. We refer to see
some inequalities for P -class functions in [13]. For many research results and applications
related to the s-convex functions, see [3, 6, 7, 9, 10, 14, 15, 17] and references therein.

Jensen’s inequality for convex functions is one of the most important results in the
theory of inequalities and for appropriate choices of the function many other famous
inequalities are particular cases of this inequality. In classical analysis, there is a general
version of Jensen’s inequality.

Let Mn and M+
n be the set of all n × n complex matrices and the set of all n × n

positive matrices, respectively, and Φ : Mn → Mk be a positive unital linear map. Let A
be a self–adjoint matrix with spectrum in (a, b). Davis [4] showed that if f is a matrix
convex function and Φ is a completely positive linear map, then

f(Φ(A)) ⩽ Φ(f(A)). (2)

The restriction to completely positive linear maps was removed by Choi [2] who showed
that (2) remains valid for all positive unital linear maps Φ. Indeed, when one restricts
to matrix convex functions instead of ordinary convex functions an analogue of Jensen’s
inequality holds for positive unital linear maps on the noncommutative matrix algebras.
Bhatia and Sharma [1] showed that the restriction to matrix convex functions is not
necessary in the case of 2× 2 matrices and one can use ordinary convex functions.

We denote the class of nonnegative matrix convex functions, the class of nonnega-
tive convex functions, the class of matrix s-convex functions, and the class of s-convex
functions by NMCF, NCF, MSCF, and SCF, respectively. Our interest is to extend the
inequality (2) to s-convex functions. This extension has an impact because of the follow-
ing inclusions:

SCF ⊇ MSCF ⊇ NMCF ⊆ NCF ⊆ SCF.

In the present paper, we give a matrix interpretation for what is called s-convex functions,
and present some inequalities including a variant of Hansen-Pedesen inequality. Using
some known results, we demonstrate that Jensen’s type inequality (2) holds for matrix
s-convex functions, see (4), but these are not our main goals. Our main purpose is to
show that the restriction to matrix s-convex functions is not necessary in the case of
2× 2 matrices and one can use ordinary s-convex functions, see (8).

The arrangement of this paper is as follows. In Section 2, we extend some well-known
results for s-convex functions for the convenience of the readers. The main results are
included in Section 3.

2. Matrix s-convex functions

In this section, we show that some Jensen’s type inequalities hold for matrix s-convex
functions. We define matrix s-convex functions in the second sense as follows.

Definition 2.1 [8] Let f be a real–valued continuous function defined on [0,∞). The
function f is matrix s-convex on [0,∞) if f(λA+(1−λ)B) ⩽ λsf(A)+ (1−λ)sf(B) for
all A,B ∈ M+

n , λ ∈ [0, 1] and s ∈ (0, 1].

We now give some Jensen’s type inequalities. In [5], it has been shown that

f
(
[C∗ApC +D∗BpD]1/p

)
⩽ 2h

(
1

2

)
(C∗f(A)C +D∗f(B)D)
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in which h is a super-multiplicative function, f is operator (p, h)-convex and C∗C +
D∗D = I. Taking h(t) = ts, D = 0, and p = 1, this concludes Theorem 2.2.

Theorem 2.2 Let f be a matrix s-convex function on [0,∞). If C ∈ Mn is an isometry
and A ∈ M+

n , then

f(C∗AC) ⩽ 21−sC∗f(A)C. (3)

The isometry in Theorem 2.2 can be replaced by a contraction.

Corollary 2.3 Let f be matrix s-convex on [0,∞) such that f(0) = 0. If C ∈ Mn is a
contraction and A ∈ M+

n , then (3) holds.

Proof. For every contraction C ∈ Mn, we put D =
√
I − C∗C. Let Ã =

(
A 0
0 0

)
and

C̃ =

(
C
D

)
. It follows that C̃∗C̃ = C∗C +D∗D = I, and by Theorem 2.2, we have

f(C∗AC) = f(C̃∗ÃC̃) ⩽ 21−sC̃∗f(Ã)C̃ = 21−sC∗f(A)C.

■

The following theorem is also a standard reforming.

Theorem 2.4 Let Φ : Mn → Mk be a unital positive linear map. If f is matrix s-convex
on [0,∞) and A ∈ M+

n , then

f(Φ(A)) ⩽ 21−sΦ(f(A)). (4)

Proof. Let Ψ be the restriction of Φ to the C∗-algebra C∗(A, I) generated by I and
A. So, Ψ is a unital completely positive map on C∗(A, I). By the Stinespring dilation
theorem [16], there exist an isometry V : Cn → Cn and a unital ∗-homomorphism
h : C∗(A, I) → Mn such that Ψ(A) = V ∗h(A)V . Consequently, by Theorem 2.2, we have

f (Φ(A)) = f (Ψ(A))

= f(V ∗h(A)V )

⩽ 21−sV ∗f (h(A))V

= 21−sV ∗h (f(A))V

= 21−sΨ(f(A))

= 21−sΦ(f(A)) .

■

3. Jensen’s inequality for 2 × 2 matrices and s-convex functions

In this section, we address the main purpose of this paper. We show how we can remove
the restriction to matrix s-convexity and use the ordinary s-convex functions in Theorem
2.4. We obtain an analogue of Jensen’s type inequality for ordinary s-convex functions.
We begin with some lemmas for s-convex functions in the second sense and s ∈ (0, 1].
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Lemma 3.1 [11] Let 0 < s ⩽ r < 1. Then the function f(t) = tr for t ⩾ 0 is s-convex.

Lemma 3.2 [11] Let X be a normed space and 0 < s ⩽ r < 1. Then the function
f : X → R defined by f(t) = ||t||r is s-convex.

Lemma 3.3 Let f be a real valued s-convex function on [0,∞) containing (a, b). Then

f(x) ⩽ L(x) (5)

for all a ⩽ x ⩽ b, where L(x) = f(b)−f(a)
b−a sx− f(b)a−f(a)b

b−a + (1− s)f(b).

Proof. Consider the function g defined by g(x) = f(x) − L(x). Then g(a) = −(1 −
s)f(b) ⩽ 0 and g(b) = −(1 − s)f(a) ⩽ 0. Define u(t) = ts and v(t) = (1 − t)s for
0 ⩽ t ⩽ 1. The functions u and v are concave on [0, 1]. The line passing through the
point (1, 1) is tangent to the function u and this line is above the function u. Indeed,

ts ⩽ st+ 1− s (6)

for 0 ⩽ t ⩽ 1. Moreover, The line passing through the point (0, 1) is tangent to the
function v and this line is above the function v which means

(1− t)s ⩽ −st+ 1 (7)

for 0 ⩽ t ⩽ 1. Let x = (1− t)a+ tb for 0 ⩽ t ⩽ 1. Since f is s-convex, in view of (6) and
(7), we have

g(x) = g((1− t)a+ tb)

= f((1− t)a+ tb)− L((1− t)a+ tb)

⩽ (1− t)sf(a) + tsf(b)− L((1− t)a+ tb)

⩽ (−st+ 1)f(a) + (st+ 1− s)f(b)− L((1− t)a+ tb).

An algebraic manipulation indicates that the right hand side of the last inequality is
equal to zero and this entails the desired inequality (5). ■

We now demonstrate that ordinary s-convexity can be replaced by matrix s-convexity
in the case of 2 × 2 matrices. We distinguish the situation when the matrix A has one
eigenvalue. In this situation, we have A = λI and so

f(Φ(A)) = f(Φ(λI)) = f(λ)I = f(λ)Φ(I) = Φ(f(λI)) = Φ(f(A)).

Indeed, the equality holds when A has one eigenvalue.

Theorem 3.4 Let Φ : M2 → Mk be a positive unital linear map. If f is s-convex on
[0,∞), then

f(Φ(A)) ⩽ Φ(f(A)) + (1− s)K(λ1, λ2), (8)

where K(λ1, λ2) =
λ1(f(λ1)+f(λ2))−2λ2f(λ1)

λ1−λ2
and λ1, λ2 are two distinct eigenvalues of A ∈

M+
2 with λ1 > λ2 ⩾ 0.
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Proof. Assume that A has distinct eigenvalues λ1 > λ2. Choose orthogonal projections
P1 and P2 such that A = λ1P1 + λ2P2. Since Φ is a unital linear map, it is proved in [1]
that

Φ(f(A)) =
f(λ1)− f(λ2)

λ1 − λ2
Φ(A)− λ2f(λ1)− λ1f(λ2)

λ1 − λ2
. (9)

According to (9) and Lemma 3.3, we see

Φ(f(A)) + (1− s)f(λ1)

⩾ sΦ(f(A)) + (1− s)f(λ1)

=
f(λ1)− f(λ2)

λ1 − λ2
sΦ(A)− λ2f(λ1)− λ1f(λ2)

λ1 − λ2
s+ (1− s)f(λ1)

=
f(λ1)− f(λ2)

λ1 − λ2
sΦ(A)− λ2f(λ1)− λ1f(λ2)

λ1 − λ2
+ (1− s)f(λ1)

+ (1− s)
λ2f(λ1)− λ1f(λ2)

λ1 − λ2

= L(Φ(A)) + (1− s)
λ2f(λ1)− λ1f(λ2)

λ1 − λ2

⩾ f(Φ(A)) + (1− s)
λ2f(λ1)− λ1f(λ2)

λ1 − λ2
.

This entails that

Φ(f(A)) + (1− s)

(
f(λ1)−

λ2f(λ1)− λ1f(λ2)

λ1 − λ2

)
⩾ f(Φ(A)),

whence we can deduce the result. ■

We can reach a result for P -class functions.

Corollary 3.5 Let Φ : M2 → Mk be a positive unital linear map and f be a P -class
function on [0,∞). Then

f(Φ(A)) ⩽ Φ(f(A)) +
λ1(f(λ1) + f(λ2))− 2λ2f(λ1)

λ1 − λ2
,

where λ1, λ2 are two distinct eigenvalues of A ∈ M+
2 with λ1 > λ2 ⩾ 0.

Proof. It is enough to consider s → 0 in Theorem 3.4. ■

The following corollary recovers the result presented by Bhatia and Sharma [1] in part.
Indeed, the restriction to matrix convex functions in (2) is not necessary in the case of
2× 2 matrices and one can use ordinary nonnegative convex functions.

Corollary 3.6 Let Φ : M2 → Mk be a positive unital linear map and f be a nonnegative
convex function on [0,∞) containing the eigenvalues of A ∈ M+

2 . Then f(Φ(A)) ⩽
Φ(f(A)).

Proof. It is enough to consider s = 1 in Theorem 3.4. ■
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Some useful results can also be deduced.

Corollary 3.7 Let Φ : M2 → Mk be a positive unital linear map. Then

Φ(Ar) ⩽ (Φ(A))r ⩽ Φ(Ar) + (1− s)
λ1(λ

r
1 + λr

2)− 2λ2λ
r
1

λ1 − λ2
,

where 0 < s ⩽ r < 1 and λ1, λ2 are two distinct eigenvalues of A ∈ M+
2 with λ1 > λ2 ⩾ 0.

Proof. Consider the function f(t) = tr, t ⩾ 0 and 0 < s ⩽ r < 1. The first inequality
follows from (2) and the fact that the function f is matrix concave on [0,∞) for 0 < s ⩽
r < 1. Lemma 3.1 infers that the function f is s-convex and so one can get the second
inequality from Theorem 3.4. ■

Corollary 3.8 Let Φ : M2 → Mk be a positive unital linear map. Then

Φ(logA) ⩽ log(Φ(A)) ⩽ Φ(logA) + log

(
(λ1λ2)

λ1

λ2λ2

1

) 1−s

λ1−λ2

,

where 0 < s < 1 and λ1, λ2 are two distinct eigenvalues of A ∈ M+
2 with λ1 > λ2 ⩾ 1.

Proof. Consider the function f(t) = log t for t ⩾ 1. The first inequality follows from
(2) and the fact that the function f is matrix concave on [1,∞). Regarding Lemma [12,
Lemma 5] the function f is s-convex and so, one can get the second inequality from
Theorem 3.4. ■

Corollary 3.9 Let Φ : M2 → Mk be a positive unital linear map. Then

∥Φ(A)∥r ⩽ Φ(∥A∥r) + (1− s)
λ1(λ

r
1 + λr

2)− 2λ2λ
r
1

λ1 − λ2
,

where 0 < s ⩽ r < 1 and λ1, λ2 are two distinct eigenvalues of A ∈ M+
2 with λ1 > λ2 ⩾ 0.

Proof. Consider the function f(t) = ∥t∥r, t ⩾ 0 and 0 < s ⩽ r < 1. The function f
is s-convex by Lemma 3.2 and so the inequality follows from Theorem 3.4 and the fact
that Φ is positive and unital. ■
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