ارائه مدل پویایی لجستیک زنجیره تأمین بر اساس اینترنت اشیاء با تاکید بر بازاریابی آنلاین
محورهای موضوعی : مدیریت بازاریابیمحمدحسین روشن ضمیر 1 , محمدعلی کرامتی 2 , صفیه مهری نژاد 3 , آزاده مهرانی 4
1 - گروه مدیریت صنعتی ، واحد تهران مرکزی ، دانشگاه آزاد اسلامی، تهران ، ایران
2 - گروه مدیریت صنعتی،واحد تهران مرکزی ،دانشگاه آزاد اسلامی ،تهران ، ایران
3 - گروه مدیریت مالی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه مدیریت مالی ، واحدنوشهر، دانشگاه آزاد اسلامی ، نوشهر ، ایران
کلید واژه: پویایی لجستیک, زنجیره تأمین, اینترنت اشیاء, بازاریابی آنلاین, هوش مصنوعی, تحلیل مضمون. ,
چکیده مقاله :
پژوهش حاضر باهدف ارائه مدل پویایی لجستیک زنجیره تأمین بر اساس اینترنت اشیاء با تأکید بر بازاریابی آنلاین انجام شد. مشارکتکنندگان این پژوهش، مدیران زنجیره تأمین باسابقه تدریس حداقل 15 سال و دارای مدرک کارشناسی ارشد و بالاتر بودهاند. انتخاب افراد به روش نمونهگیری هدفمند با ملاک سابقه تدریس در دوره تحصیلی ابتدایی انجام گردید. نمونهگیری با مشارکت 18 نفر از صاحبنظران و خبرگان صورت گرفت. ابزار جمعآوری دادهها، شامل دو بخش، 1- بررسی و کنکاش اسناد بالادستی، اسناد مرتبط با زنجیره تأمین، لجستیک و اینترنت اشیاء در بخش کتابخانهای، 2- مصاحبه نیمه ساختاریافته در بخش میدانی بود که مصاحبه نیمه ساختاریافته با مشارکتکنندگان تا مرحله اشباع نظری ادامه یافت. براي تجزیهوتحلیل داده¬های کیفی از روش تحلیل مضمون براساس الگوی آتراید - استرلینگ استفاده شد. به منظور سنجش پایایی از ضریب هولستی، ضریب پی اسکات، شاخص کاپای کوهن و آلفای کرپیندروف استفاده گردید که مورد تائید قرار گرفت. در قسمت تحلیل مضمون از نرم افزار ATLASTI استفاده شده است.با توجه به نتایج از چهار معیار کمی برای بررسی قابلیت اعتبار، قابلیت انتقال، قابلیت تأیید و اطمینان پذیری استفادهشده است: ضریب هولستی، ضریب پی اسکات، شاخص کاپای کوهن و آلفای کرپیندروف. میزان همبستگی دیدگاه خبرگان با محاسبه ضریب هولستی (PAO) یا «درصد توافق مشاهدهشده » 0/810 بدست آمده است که مقدار قابل توجهی است. با توجه به ایراداتی که به روش هولستی وارد است شاخص پی-اسکات نیز محاسبه شده است که میزان آن 0/799 بدست آمده است. چهارمین شاخص برآورد اعتبار تحقیقات کیفی شاخص کاپای کوهن است. شاخص کاپای کوهن در این مطالعه 0/746 بدست آمده است. در نهایت نیز از آلفای کرپیندروف استفادهشده است و میزان آن در این مطالعه 0/834 برآورد گردیده است.
The current research was conducted with the aim of providing a supply chain logistics dynamic model based on the Internet of Things with an emphasis on online marketing. The participants of this research were supply chain managers with at least 15 years of teaching experience and a master's degree or higher. The selection of people was done by purposive sampling with the criterion of teaching experience in the elementary education period. Sampling was done with the participation of 18 experts. The data collection tool included two parts, 1- examination and exploration of upstream documents, documents related to the supply chain, logistics and Internet of Things in the library part, 2- semi-structured interview in the field part, where the semi-structured interview with the participants continued until the theoretical saturation stage. Found. To analyze the qualitative data, the theme analysis method based on the Atreide-Sterling model was used. In order to measure reliability, Holstein's coefficient, P-Scott's coefficient, Cohen's kappa index and Kruppendorf's alpha were used, which were confirmed. ATLASTI software was used in the theme analysis section. According to the results, four quantitative criteria were used to check the validity, transferability, verifiability and reliability: Holstein coefficient, Scott P coefficient, Cohen's kappa index and Krepinderoff's alpha. The degree of correlation of the experts' opinion was obtained by calculating the Holstein coefficient (PAO) or "observed agreement percentage" of 0.810, which is a significant value. According to the flaws in the Holstein method, the P-Scott index was also calculated, and its value was 0.799. The fourth indicator of validity of qualitative research is Cohen's Kappa index. Cohen's kappa index is 0.746 in this study. Finally, Kerpinderoff's alpha was used and its value was estimated at 0.834 in this study.
1. جمالی، ع. موسوی، ا. محمدی، م. (1399). تحلیل ارتباط میان شاخصهای کاربرد اینترنت اشیاء در زنجیره تأمین لوازم خانگی با استفاده از رویکرد نقشه شناختی فازی. مطالعات مدیریت کسب و کار هوشمند، 30: 137-162.
2. رجبزاده، محسن؛ الهی، شعبان؛ مهرآیین، محمد. (1400). اینترنت اشیا در مدیریت زنجیره تأمین: مروری نظاممند با استفاده از رویکرد قیف پارادایمی. پژوهشنامه پردازش و مدیریت اطلاعات، ۳۷ (۱)، ۸۲-۵۹.
3. رنجبر، امیر. (1401). مروری بر ضرورت اینترنت اشیا در پروژههای شهر هوشمند رویکرد نوین در توسعه پایدار شهری. پژوهشهای کاربردی در مدیریت و علوم انسانی، 3 (7)، 35-46.
4. سبحان اسماعیلی، سپیده آقایی(1395)، بازاریابی تعاملی هوشمند با رویکرد اینترنت اشیاء. دبیرخانه همایش بین المللی انسجام مدیریت و اقتصاد در توسعه شهری تهران 5.
5. صیادی، م. صفری، ا. قبادی، س. (1401). اولویتبندی کاربردهای اینترنت اشیا در مدیریت زنجیرۀ تأمین با استفاده از رویکرد تصمیمگیری چند معیاره و تحلیل مضمون. پردازش و مدیریت اطلاعات، 107: 721-748.
6. مریم شریعتی، محمد رضا معتدل، وحیدرضا میرابی (1402). تدوین مدلی جامع جهت ارزیابی عوامل بازاریابی الکترونیکی موثر بر زنجیره تامین چابک با رویکرد QFD در اپراتوری همراه اول ایران. فصلنامه آینده پژوهی مدیریت، سال سی و چهارم؛ شماره 132؛ بهار 1402.
7. Abdul Zahra, M. Garip, I. Bothichan, A. (2022). Internet of Things-Based Smart and Connected Supply Chain: A Review. International Journal of Antennas and Propagation, 5: 1-16.
8. Ahmad, A., Nuseir, M.T., Alzoubi, H.M., Al Kurdi, B., Alshurideh, M.T., Al-Hamad, A. (2024). Impact of the Internet of Things (IoT) on the E-Supply Chain with the Mediating Role of Information Technology Capabilities: Empirical Evidence from the UAE Automotive Manufacturing Industry. In: Alzoubi, H.M., Alshurideh, M.T., Ghazal, T.M. (eds) Cyber Security Impact on Digitalization and Business Intelligence. Studies in Big Data, vol 117. Springer, Cham.
9. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M. &Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE communications surveys & tutorials, 17(4), 2347-2376
10. Alvandi, A., Rahmaty, M., & Hosseini, S. E. (2022). Presenting a Development Model of Sport Entrepreneurship in the Professional Clubs of Premier Football League: A Mixed Approach.
11. Atzori, L., Iera, A. & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787-2805.
12. Badica, A. L., & Mitucă, M. O. (2021). IOT-Enhanced Digital Marketing Conceptual Framework. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 12(4), 509-531. https://doi.org/10.18662/brain/12.4/262
13. Barreto, L., Amaral, A. & Pereira, T. (2017). Industry 4.0 implications in logistics: an overview. Procedia Manufacturing, 13, 1245-1252
14. Bayanati, M. (2023). Business Model of Internet of Things and Blockchain Technology in Developing Countries. International Journal of Innovation in Engineering, 3(1), 13-22.
15. Campos, Y. & Villa, J. L. (2018). Technologies applied in the monitoring and control of the temperature in the Cold Chain. IEEE 2nd Colombian Conference on Robotics and Automation (CCRA), pp. 1-6
16. Chen, X., He, C., Chen, Y. et al (2023). Internet of Things (IoT)—blockchain-enabled pharmaceutical supply chain resilience in the post-pandemic era. Front. Eng. Manag. 10, 82–95.
17. Chen, Y., Bayanati, M., Ebrahimi, M., & Khalijian, S. (2022). A Novel Optimization Approach for Educational Class Scheduling with considering the Students and Teachers’ Preferences. Discrete Dynamics in Nature and Society, 2022.
18. David Uver 2023. Internet of things and the future of digital marketing. Journal of Data Analytics, Vol 2, No 1, (2023), 24-29.
19. Daya, M. Hassini, E. Bahroun, Z. (2022). A Conceptual Framework for Understanding the Impact of Internet of Things on Supply Chain Management. OPERATIONS AND SUPPLY CHAIN MANAGEMENT, 2: 251-268.
20. Dubey, R., Altay, N., Gunasekaran, A., Blome, C., Papadopoulos, T., & Childe, S. J. (2018). Supply chain agility, adaptability and alignment: empirical evidence from the Indian auto components industry. International Journal of Operations & Production Management, 38(1), 129-148.
21. Filina-Dawidowicz, L. & Stankiewicz, S. (2021). Organization and Implementation of Intermodal Transport of Perishable Goods: Contemporary Problems of Forwarders. In Sustainable Design and Manufacturing 2020 (pp. 543-553). Springer, Singapore.
22. Gharachorloo, N., Nahr, J. G., & Nozari, H. (2021). SWOT analysis in the General Organization of Labor, Cooperation and Social Welfare of East Azerbaijan Province with a scientific and technological approach. International Journal of Innovation in Engineering, 1(4), 47-61.
23. Goli, A., Babaee Tirkolaee, E., (2023). Golmohammadi AM. et al. A robust optimization model to design an IoT-based sustainable supply chain network with flexibility. Cent Eur J Oper Res
24. Gong, W. (2016). The Internet of Things (IoT): What is the potential of the internet of things (IoT) as a marketing tool? [Bachelor’s thesis, University of Twente]. https://essay.utwente.nl/70018
25. Hassini, E., Ben-Daya, M., Bahroun, Z. (2023). Impact of Internet of Things on Food Supply Chains. In: Golinska-Dawson, P., Tsai, KM., Werner-Lewandowska, K. (eds) Smart and Sustainable Supply Chain and Logistics — Challenges, Methods and Best Practices. EcoProduction. Springer, Cham.
26. Kazancoglu, Y., Ozbiltekin-Pala, M., Sezer, M. D., Kumar, A., & Luthra, S. (2022). Circular dairy supply chain management through Internet of Things-enabled technologies. Environmental Science and Pollution Research, 1-13.
27. Khargh, S. V., Baghbani, S. M. Gh., Rojuee, M., & Titkanloo, S. J. (2023). Identifying The Stakeholders Of The Construction Industry Based On The Governing Values: Content Analysis Based On Semi-Structured Interviews. Cadernos de Educação Tecnologia e Sociedade, 16(2), 413-430. https://www.brajets.com/index.php/brajets/ article/view/1314
28. Kian, R. (2022). Investigation of IoT applications in supply chain management with fuzzy hierarchical analysis. Journal of Data Analytics, 1: 8-15.
29. Lo, F.-Y., & Campos, N. (2018). Blending Internet-of-Things (IoT) solutions into relationship marketing strategies. Technological Forecasting and Social Change, 137, 10-18. https://doi.org/10.1016/j.techfore.2018.09.029
30. Long, L. (2022). Research on status information monitoring of power equipment based on Internet of Things. Energy Reports, 8, 281-286.
31. Mital, M., Chang, V., Choudhary, P., Papa, A., & Pani, A. K. (2018). Adoption of Internet of Things in India: A test of competing models using a structured equation modeling approach. Technological Forecasting and Social Change, 136, 339-346.
32. Mohammadi, H., Ghazanfari, M., Nozari, H., & Shafiezad, O. (2015). Combining the theory of constraints with system dynamics: A general model (case study of the subsidized milk industry). International Journal of Management Science and Engineering Management, 10(2), 102-108.
33. Nagajan, S. Deverajan, G. Chatterjee, P. (2022). Integration of IoT based routing process for food supply chain management in sustainable smart cities. Sustainable Cities and Society, 76: 10-20.
34. Nahr, J. G., Nozari, H., & Sadeghi, M. E. (2021). Green supply chain based on artificial intelligence of things (AIoT). International Journal of Innovation in Management, Economics and Social Sciences, 1(2), 56-63.
35. Nozari, H., & Szmelter-Jarosz, A. (2022). IoT-based Supply Chain For Smart Business (Vol. 1). ISNET.
36. Oklander, M., Oklander, T., Yashkina, O., Pedko, I., & Chaikovska, M. (2018). Analysis of technological innovations in digital marketing. Eastern-European Journal of Enterprise Technologies, 95(5(3)), 80-91. https://doi.org/10.15587/1729-4061.2018.143956
37. Pal, K. (2022). Blockchain-Integrated Internet-of-Things Architecture in Privacy Preserving for Large-Scale Healthcare Supply Chain Data. In Blockchain Technology and Computational Excellence for Society 5.0 (pp. 80-124). IGI Global.
38. Puica, E. (2023). Improving Supply Chain Management by Integrating RFID with IoT Shared Database: Proposing a System Architecture. In: Maglogiannis, I., Iliadis, L., MacIntyre, J., Dominguez, M. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 676. Springer, Cham.
39. Rafierad, S., Aghajani, H. A., Agha Ahmadi, G., & Rahmaty, M. (2022). Construction and Validation of Dimensions and Components of the Organizational Anomie Scale in order to provide a Native Model in Government Hospitals. Journal of System Management, 8(2), 57-73.
40. Rani, P., Jain, V., Joshi, M., Khandelwal, M. & Rao, S. (2021). A Secured Supply Chain Network for Route Optimization and Product Traceability Using Blockchain in Internet of Things. In Data Analytics and Management (pp. 637-647). Springer, Singapore
41. Ravikumar, K. C., Chiranjeevi, P., Devarajan, N. M., Kaur, C., & Taloba, A. I. (2022). Challenges in internet of things towards the security using deep learning techniques. Measurement: Sensors, 10(1), 473-491.
42. Ravindran, D., Jaheer Mukthar, K. P., Zarzosa-Marquez, E., Pérez Falcón, J., Jamanca-Anaya, R., & Silva-Gonzales, L. (2023). Impact of Digital Marketing and IoT Tools on MSME’s Sales Performance and Business Sustainability. In Al Mubarak, M., & Hamdan, A. (Eds.), Technological Sustainability and Business Competitive Advantage (pp. 65-77). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-35525-7_5
43. Strozzi, F., Colicchia, C., Creazza, A. & Noè, C. (2017). Literature review on the "Smart Factory" concept using bibliometric tools. International Journal of Production, 4, 512- 514. https://doi.org/10.1080/00207543.2017.1326643
44. Szmelter-Jarosz, A., Ghahremani-Nahr, J., & Nozari, H. (2021). A neutrosophic fuzzy optimisation model for optimal sustainable closed-loop supply chain network during COVID-19. Journal of Risk and Financial Management, 14(11), 519
45. Tightiz, L., & Yoo, J. (2023). A novel deep reinforcement learning based business model arrangement for Korean net-zero residential micro-grid considering whole stakeholders’ interests. ISA transactions, 137, 471-491. https://doi.org/10.1016/j.isatra.2022.12.008
46. Wójcicki, K., Biegańska, M., Paliwoda, B., & Górna, J. (2022). Internet of Things in Industry: Research Profiling, Application, Challenges and Opportunities—A Review. Energies, 15(5), 1806.
47. Xu, L. D. (2020). The contribution of systems science to Industry 4.0. Systems Research and Behavioral Science, 37(4), 618-631.
48. Yu, Z., Khan, S. A. R., Mathew, M., Umar, M., Hassan, M., & Sajid, M. J. (2022). Identifying and Analyzing the Barriers of Internet-of-Things in Sustainable Supply Chain through Newly Proposed Spherical Fuzzy Geometric Mean. Computers & Industrial Engineering, 108227.
49. Zadtootaghaj, P., Mohammadian, A., Mahbanooei, B. & Ghasemi, R. (2019). Internet of Things: A Survey for the Individuals' E-Health Applications. Journal of Information Technology Management, 11(1), 102-129.
50. Zeng, X., Balke, K. N. & Songchitruksa, P. (2012). Potential connected vehicle applications to enhance mobility, safety, and environmental security (No. SWUTC/12/161103-1). Southwest Region University Transportation Center, Texas Transportation Institute, Texas A & M University System.
51. Zhang, H., Zhu, L., Dai, T., Zhang, L., Feng, X., Zhang, L., & Zhang, K. (2022). Smart object recommendation based on topic learning and joint features in the social internet of things. Digital Communications and Networks, 34(4), 221-242.
52. Zhu, L., Yu, F. R., Wang, Y., Ning, B. & Tang, T. (2018). Big data analytics in intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 20(1), 383-398