تحلیل چالشهای یکپارچهسازی هوش مصنوعی و مدیریت ارتباط با مشتری
محورهای موضوعی : طراحی یک برنامه بازاریابی عمومیشیروان کیوانی 1 , مجتبی حیدری 2 , رضا رستم زاده 3
1 - دانشجو/ دانشگاه آزاد اسلامی واحد ارومیه
2 - عضو هیات علمی
3 - دانشیار گروه مدیریت، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران
کلید واژه: چالش, ارتباط با مشتری, هوش مصنوعی, یکپارچهسازی,
چکیده مقاله :
ادغام هوش مصنوعی در حوزه مدیریت ارتباط با مشتری (CRM) دارای پتانسیل چشمگیری برای ارتقای کارایی سازمانی است. این فناوری نوین میتواند به شرکتها در پیشبینی نیازها و ترجیحات مشتریان، بهینهسازی فرآیندها، ارائه خدمات شخصیسازیشده و بهبود تجربه مشتری کمک کند. با این حال، برای دستیابی به یک یکپارچهسازی موفق هوش مصنوعی و مدیریت ارتباط با مشتری، شرکتها باید چالشها و پیچیدگیهای ویژهای را که ناشی از ماهیت متمایز فرایندهای مدیریت ارتباط با مشتری است، مدنظر قرار دهند. هدف این پژوهش، شناسایی چالشهایی است که سازمانها در طول مراحل مختلف ادغام هوش مصنوعی در مدیریت ارتباط با مشتری، از کشف اولیه تا پایداری نهایی، باید بر آنها غلبه کنند. با توجه به تخصصهای چندگانه مورد نیاز در این حوزه شامل هوش مصنوعی، مدیریت ارتباط با مشتری، علم داده و مدیریت کسبوکار، رویکرد تحقیقاتی انتخابی، مصاحبههای کیفی با خبرگان متعددی از این زمینهها است. در این تحقیق، ده چالش خاص مرتبط با مدیریت ارتباط با مشتری مبتنی بر هوش مصنوعی شناسایی و در چهار مرحله پیادهسازی هوش مصنوعی (کشف، توسعه، پیادهسازی و پایداری) دستهبندی شدهاند. یافتههای این تحقیق به درک تجربی فرآیند یکپارچه سازی هوش مصنوعی و مدیریت ارتباط با مشتری کمک میکند و چشمانداز بلندمدت از بهکارگیری هوش مصنوعی در روابط با مشتری ارائه میدهد. این مطالعه پایه و اساسی را برای بررسی فعالیتها و قابلیتهای ضروری جهت مدیریت چالشهای یکپارچهسازی هوش مصنوعی و مدیریت ارتباط با مشتری فراهم میآورد و سؤالات اساسی را برای مدیرانی که قصد ورود به این حوزه را دارند، مطرح میکند.
The integration of artificial intelligence (AI) in the field of customer relationship management (CRM) has tremendous potential to enhance organizational efficiency. This novel technology can help companies in predicting customer needs and preferences, optimizing processes, delivering personalized services, and improving the customer experience. However, to achieve a successful integration of AI and CRM, companies need to consider the unique challenges and complexities arising from the distinct nature of CRM processes. The objective of this research is to identify the challenges that organizations must overcome during the different stages of integrating AI into CRM, from the initial discovery to the final sustainability. Given the multiple areas of expertise required in this domain, including AI, CRM, data science, and business management, the chosen research approach involves qualitative interviews with multiple experts from these fields. In this study, ten specific challenges related to AI-based CRM have been identified and categorized across the four stages of AI implementation (discovery, development, deployment, and sustainability). The findings of this research contribute to an empirical understanding of the process of integrating AI and CRM, and provide a long-term perspective on the application of AI in customer relationships. This study lays the groundwork for examining the essential activities and capabilities required to manage the integration challenges of AI and CRM, and raises fundamental questions for managers who intend to venture into this domain.
1- باشکوه اجیرلو, م.، و محمدخانی, ر. (1402). طراحی مدل پیادهسازی بازاریابی دیجیتال بنگاه به بنگاه با تأکید بر مدیریت ارتباط با مشتری مبتنی بر هوش مصنوعی، تحقیقات بازاریابی نوین، 13(3)، 133-158. doi: 10.22108/nmrj.2023.138898.2952
2- توران پشتی، ن. (1402). بررسی تاثیر هوش مصنوعی بر بازاریابی و مدیریت ارتباط با مشتری کسب و کارها، سومین کنفرانس بین المللی پژوهش های کاربردی در مدیریت، حسابداری، اقتصاد و مهندسی صنایع. https://civilica.com/doc/1804714
3- جاوید، م.ر.، نعمتیزاده، س.، و قاسمی، ب. (1402). سنجش کیفیت مدیریت ارتباط با مشتری برای توسعۀ استراتژیهای بازاریابی دیجیتال در بانک شهر، اقتصاد مالی (اقتصاد مالی و توسعه)، 17(63)، 313-334.
1- Ångstrom, R. C., Björn, M., Dahlander, L., Mähring, M., & Wallin, M. W. (2023). Getting AI Implementation Right: Insights from a Global Survey. California Management Review, 1–18. https://doi.org/10.1177/00081256231190430
2- Antonio, V. (2018, July 30). How AI is changing sales. Harvard Business Review. Retrieved October 2023, from https://hbr.org/2018/07/how-ai-is-changing-sales
3- Boulding, W., Staelin, R., Ehret, M., Johnston, W. J., Berry, L., Deighton, J., Gronroos, C., Gupta, S., Kamakura, W., Johnston, W., Lehmann, D. R., Mason, C., Mela, C., Neslin, S., & Bolton, R. N. (2005). A customer relationship management roadmap: what is known, potential pitfalls, and where to go. Journal of Marketing, 69, 155–166. http://www.atypon-link.com/AMA/doi/abs/10.1509/jmkg.2005.69.4.155
4- Bryman, A., McCracken, G., Pfaffenberger, B., & Morgan, D. L. (1990). The long interview. Contemporary Sociology, 19(3). https://doi.org/10.2307/2072531
5- Brynjolfsson, E., Jin, W., & McElheran, K. S. (2021). The power of prediction: predictive analytics, workplace complements, and business performance. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3849716
6- Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy (pp. 1–61). McKinsey Global Institute. https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-modeling-the-impact-of-ai-on-the-world-economy
7- Ångstrom, R. C., Björn, M., Dahlander, L., Mähring, M., & Wallin, M. W. (2023). Getting AI Implementation Right: Insights from a Global Survey. California Management Review, 1–18. https://doi.org/10.1177/00081256231190430
8- Antonio, V. (2018, July 30). How AI is changing sales. Harvard Business Review. Retrieved October 2023, from https://hbr.org/2018/07/how-ai-is-changing-sales
9- Boulding, W., Staelin, R., Ehret, M., Johnston, W. J., Berry, L., Deighton, J., Gronroos, C., Gupta, S., Kamakura, W., Johnston, W., Lehmann, D. R., Mason, C., Mela, C., Neslin, S., & Bolton, R. N. (2005). A customer relationship management roadmap: what is known, potential pitfalls, and where to go. Journal of Marketing, 69, 155–166. http://www.atypon-link.com/AMA/doi/abs/10.1509/jmkg.2005.69.4.155
10- Bryman, A., McCracken, G., Pfaffenberger, B., & Morgan, D. L. (1990). The long interview. Contemporary Sociology, 19(3). https://doi.org/10.2307/2072531
11- Brynjolfsson, E., Jin, W., & McElheran, K. S. (2021). The power of prediction: predictive analytics, workplace complements, and business performance. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3849716
12- Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy (pp. 1–61). McKinsey Global Institute. https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-modeling-the-impact-of-ai-on-the-world-economy
13- Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., & Williams, M. D. (2021). Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
14- Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review, 14(4). https://doi.org/10.5465/amr.1989.4308385
15- Foley, G., Timonen, V., Conlon, C., & O'Dare, C. E. (2021). Interviewing as a vehicle for theoretical sampling in grounded theory. International Journal of Qualitative Methods, 20, 1–10. https://doi.org/10.1177/1609406920980957
16- Ghani, M. F. A., Hizam-Hanafiah, M., Isa, R. M., & Hamid, H. A. (2022). A preliminary study: exploring franchising growth factors of franchisor and franchisee. Journal of Open Innovation: Technology, Marketing, & Complexity, 8(3). https://doi.org/10.3390/joitmc8030138
17- Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing Research, 17(4). https://doi.org/10.1097/00006199-196807000-00014
18- Gupta, S., & Ramachandran, D. (2021). Emerging Market Retail: Transitioning from a Product-Centric to a Customer-Centric Approach. Journal of Retailing. https://doi.org/10.1016/j.jretai.2021.01.008
19- Helmy, R., Khourshed, N., Wahba, M., & El Bary, A. A. (2020). Exploring critical success factors for public private partnership case study: The educational sector in egypt. Journal of Open Innovation: Technology, Marketing, & Complexity, 6(4), 1–27. https://doi.org/10.3390/joitmc6040142
20- Homburg, C., Jozić, D., & Kuehnl, C. (2017). Customer experience management: toward implementing an evolving marketing concept. Journal of the Academy of Marketing Science, 45(3), 377–401. https://doi.org/10.1007/s11747-015-0460-7
21- Huang, M., & Rust, R. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50.
22- Ivančić, L., Vuksić, V., & Spremić, M. (2019). Mastering the digital transformation process: business practices and lessons learned. Technology Innovation Management Review, 9(2), 36–50. https://doi.org/10.22215/timreview/1217
23- Jobin, A., Ienca, M., & Vayena, E. (2019). Artificial Intelligence: the global landscape of ethics guidelines. Nature Machine Intelligence, 1(9), 389–399. https://arxiv.org/pdf/1906.11668
24- Kaplan, A., & Haenlein, M. (2019). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. https://doi.org/10.1016/j.bushor.2019.09.003
25- Keegan, B. J., Canhoto, A. I., & Yen, D. A. wan. (2022). Power negotiation on the tango dancefloor: the adoption of AI in B2B marketing. Industrial Marketing Management, 100, 36–48. https://doi.org/10.1016/j.indmarman.2021.11.001
26- Kumar, V., Ramachandran, D., & Kumar, B. (2020). Influence of new-age technologies on marketing: a research agenda. Journal of Business Research. https://doi.org/10.1016/j.jbusres.2020.01.007
27- Latinovic, Z., & Chatterjee, S. C. (2022). Achieving the promise of AI and ML in delivering economic and relational customer value in B2B. Journal of Business Research, 144, 966–974. https://doi.org/10.1016/j.jbusres.2022.01.052
28- Lecompte, M. D., & Goetz, J. P. (1982). Problems of reliability and validity in ethnographic research. Review of Educational Research, 52(1). https://doi.org/10.3102/00346543052001031
29- Libai, B., Bart, Y., Gensler, S., Hofacker, C. F., Kaplan, A., Kotterheinrich, K., & Kroll, E. B. (2020). Brave new world? On AI and the management of customer relationships. Journal of Interactive Marketing, 51, 44–56. https://doi.org/10.1016/j.intmar.2020.04.002
30- Lincoln, Y. S., & Guba, E. G. (1985). Establishing Trustworthiness. In Naturalistic Inquiry (pp. 288–327). https://doi.org/10.4337/9781800371323.00016
31- Lokuge, S., Sedera, D., Kumar, S., Ariyachandra, T., & Ravi, V. (2020). The next wave of CRM innovation: implications for research, teaching, and practice. Communications of the Association for Information Systems, 46, 560–583. https://doi.org/10.17705/1CAIS.04623
32- MacInnis, D. J., Morwitz, V. G., Botti, S., Hoffman, D. L., Kozinets, R. V., Lehmann, D. R., Lynch, J. G., & Pechmann, C. (2020). Creating boundary-breaking, marketing-relevant consumer research. Journal of Marketing, 84(2), 1–23. https://doi.org/10.1177/0022242919889876
33- Mariani, M. M., Perez-Vega, R., & Wirtz, J. (2022). AI in marketing, consumer research and psychology: a systematic literature review and research agenda. Psychology & Marketing, 39(4), 755–776. https://doi.org/10.1002/mar.21619
34- Mishra, N., & Mukherjee, S. (2019). Effect of artificial intelligence on customer relationship management of Amazon in Bangalore. International Journal of Management, 10(4), 168–172. https://doi.org/10.34218/IJM.10.4.2019.016
35- Mishra, S., Ewing, M. T., & Cooper, H. B. (2022). Artificial intelligence focus and firm performance. 0123456789. Journal of the Academy of Marketing Science. https://doi.org/10.1007/s11747-022-00876-5
36- Moradi, M., & Dass, M. (2022). Applications of artificial intelligence in B2B marketing: challenges and future directions. Industrial Marketing Management, 107, 300–314. https://doi.org/10.1016/j.indmarman.2022.10.016
37- Oliveira, T., & Martins, M. F. (2010). Understanding e-business adoption across industries in European countries. Industrial Management & Data Systems, 110(9), 1337–1354.
38- Patton, M. (1990). Designing qualitative studies. In Qualitative Evaluation and Research Methods (pp. 169–186). SAGE Publications, Inc. https://doi.org/10.4135/9781848608191.d38
39- Payne, A., & Frow, P. (2005). A strategic framework for customer relationship management. Journal of Marketing, 69(4), 167–176.
40- Perna, A., & Baraldi, E. (2014). CRM Systems in Industrial Companies: Intra- and Inter-Organizational Effects. Palgrave Macmillan.
41- Rababah, K. (2011). Customer Relationship Management (CRM) processes from theory to practice: the pre-implementation plan of CRM system. International Journal of e-Education, e-Business, e-Management and e-Learning, 1(1). https://doi.org/10.7763/ijeeee.2011.v1.4
42- Radhakrishnan, J., & Chattopadhyay, M. (2020). Determinants and barriers of artificial intelligence adoption – a literature review. In IFIP Advances in Information and Communication Technology (pp. 89–99). Springer. https://doi.org/10.1007/978-3-030-64849-7_9
43- Reim, W., Åstrom, J., & Eriksson, O. (2020). Implementation of Artificial Intelligence (AI): A Roadmap for Business Model Innovation. AI, 1(2). https://doi.org/10.3390/ai1020011
44- Rust, R. T. (2020). The future of marketing. International Journal of Research in Marketing, 37(1), 15–26. https://doi.org/10.1016/j.ijresmar.2019.08.002
45- Schulze-Horn, I., Hueren, S., Scheffler, P., & Schiele, H. (2020). Artificial intelligence in purchasing: facilitating mechanism design-based negotiations. Applied Artificial Intelligence, 34(8), 618–642. https://doi.org/10.1080/08839514.2020.1749337
46- Stancombe, C., Tolido, R., Buvat, J., Khadikar, A., Subrahmanyam, K., Thieullent, A.-L., & Chandna, A. (2017). Turning AI into concrete value: the successful implementers' toolkit. The Digital Transformation Institute, Capgemini. https://www.capgemini.com/consulting-de/wp-content/uploads/sites/32/2017/09/artificial-intelligence-report.pdf
47- Strauss, A. L., & Corbin, J. M. (2000). Basics of qualitative research: techniques and procedures for developing grounded theory (2nd ed.). Management Learning, 31(4). https://doi.org/10.1177/1350507600314007
48- Suoniemi, S., Meyer-Waarden, L., Munzel, A., Zablah, A. R., & Straub, D. (2020). Big data and firm performance: the roles of market-directed capabilities and business strategy. Information & Management, 57(7), 103365. https://doi.org/10.1016/j.im.2020.103365
49- Thorpe, R., & Holt, R. (2011). The SAGE dictionary of qualitative management research. SAGE.
50- Tornatzky, L. G., & Fleischer, M. (1990). The process of technological innovation (3rd ed.). Heath and Company.
51- Venkatesh, V. (2000). Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365.
52- Venkatesh, V., Thong, J. Y., & Xu, X. (2016). Unified theory of acceptance and use of technology: a synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328–376.
53- Vignesh, R., & Vasantha, S. (2019). Significant developments of artificial intelligence in indian ecommerce industry in 2019. International Journal of Scientific & Technology Research, 8(12), 2746–2748.
54- Wallendorf, M., & Belk, R. W. (1989). Assessing Trustworthiness in Naturalistic Consumer Research by Melanie Wallendorf and Russell W. Belk. In E. C. Hirschman (Ed.), Interpretive Consumer Research.
55- Wilson-Nash, C., Goode, A., & Currie, A. (2020). Introducing the socialbot: a novel touchpoint along the young adult customer journey. European Journal of Marketing, 54(10), 2621–2643. https://doi.org/10.1108/EJM-07-2019-0555
56- Zaki, M. (2019). Digital transformation: harnessing digital technologies for the next generation of services. Journal of Services Marketing, 33(4), 429–435. https://doi.org/10.1108/JSM-01-2019-0034