Analysis of Free Vibration Sector Plate Based on Elastic Medium by using New Version of Differential Quadrature Method
محورهای موضوعی : فصلنامه شبیه سازی و تحلیل تکنولوژی های نوین در مهندسی مکانیکمسلم محمدی 1 , مصطفی غیور 2 , علی فرج پور 3
1 - کارشناس ارشد، دانشکده مکانیک، دانشگاه صنعتی اصفهان.
2 - دانشیار، دانشکده مکانیک، دانشگاه صنعتی اصفهان.
3 - کارشناس ارشد، دانشکده مکانیک، دانشگاه صنعتی اصفهان.
کلید واژه: Differential quadrature method, Vibration, Pasternak foundation, Circular Sector plate, Polar Orthotropic,
چکیده مقاله :
The new version of differential quadrature (DQ) method is extended to analyze the free vibration of thin sector orthotropic plates on the Pasternak elastic foundation with various sector angles and elastic parameters. Detailed formulations are given. Comparisons are made with existing analytical and/or numerical data. Numerical results indicate that convergence can be achieved with increasing in number of grid points. The accurate results could be obtained with 9x9 or even higher grid. It is found that the results are influenced by grid spacing and for obtaining the accurate and reliable result non-uniform grid should be used.
در مقاله حاضر از روش بهبود یافته انتگرال دیفرانسیلی برای تحلیل ارتعاشات آزاد یک صفحه قطاعی شکل با رفتار ارتوتروپیک قطبی بر روی بستر الاستیک دو پارامتری استفاده شده است. جزئیات و فرمول بندی این روش عددی ارائه شده و با استفاده از آن مقادیر دقیقی از فرکانسهای طبیعی برای محدوده وسیعی از دو پارامتر بستر الاستیک با هم مقایسه شده است. از مزیتهای روش بهبود یافته انتگرال دیفرانسیلی میتوان به عدم استفاده از روش دلتا و سادگی اعمال شرایط مرزی اشاره کرد. همچنین این روش عددی هیچ گونه محدودیتی در مقدار زاویه رأس قطاع و یا نوع شرایط مرزی ندارد. این در حالی است که اکثر روشهای عددی در این دو مورد دارای محدودیتاند. فرکانسهای طبیعی یک ورق قطاعی شکل با خواص ارتوتروپیک قطبی بر روی بستر الاستیک دو پارامتری برای اولین بار با استفاده از روش بهبود یافته انتگرال دیفرانسیلی در این بررسی بهدست آمده است.
[1] Chakraverty S., Vibration of plates, CRC press, Taylor & Francis Group, 2009.
[2] Rudolph S., Ing P.E., Theories and Applications of Plate Analysis, John Wiley & Sons 2nd edited, New Jersey, 2004.
[3] Rao S., Vibration of continuous systems, John Wiley & Sons, 2007.
[4] Liew, K.M., Han, J.B., Xiao, Z.M., Du, H., Differential quadrature method for mindlin plates on Winkler foundations, International Journal of Mech. Sci., Vol. 38, 1996, pp.405–421.
[5] Zhou D., Lo S.H., Au F.T.K., Cheung Y.K., Three-dimensional free vibration of thick circular plates on Pasternak foundation, Journal of Sound and Vibration, Vol. 292, 2006, pp. 726 – 741.
[6] Hosseini-Hashemi Sh., Rokni-Damavandi-Taher H., Omidi M., 3-D free vibration analysis of annular plates on Pasternak elastic foundation via p–Ritz method, Journal of Sound and Vibration, Vol. 311, 2008, pp.1114–1140.
[7] Qin, Q.H., Hybrid–Treffiz finite element approach for plate bending on an elastic foundation, Appl. Math. ,Vol.18, 1994, pp.334-339.
[8] Qin, Q.H., Hybrid–Treffiz finite element method for Reissner plates on an elastic foundation, Comput. Methods Appl. Mech. Eng., Vol. 122, 1995, pp.379–392.
[9] Gupta U.S., Ansari A.H., Sharma S., Buckling and vibration of polar orthotropic circular plate resting on Winkler foundation, Journal of Sound and Vibration, Vol. 297, 2006, pp.457 – 476.
[10] Huang C.S., Leissa A.W., McGee O.G., Exact analytical solutions for the vibrations of sectorial plates with simply supported Radial edges, J. Appl. Mech. ,Vol. 60, 1993, pp.478–483.
[11] Huang C.S., Leissa A.W., McGee O.G., Exact analytical solutions for free vibrations of thick sectorial plates with simply Supported radial edges, Int. J. Solids Struct., Vol. 31, 1994, pp.1609–1631.
[12] Shu C., Richards B. E., Application of generalized differential quadrature to solve two-dimensional incompressible Navier-stokes equations, Int. J. Number. Methods Fluids ,Vol. 15 1992, pp.791-798.
[13] Shu C., Differential quadrature and its application in engineering, Springer-Verlag, London 2000.
[14] Liu F.L., Liew K.M., Free vibration analysis of Mindlin sector plates numerical solutions by diffrential quadrature method, Comput Methods, 1999.
[15] Wu T.Y., Liu G.R., The generalized differential quadrature rule for initial value differential equations, J. Sound Vib., Vol. 233, 2000, pp.195-223.
[16] Wu T.Y., Liu G.R., The generalized differential quadrature rule for fourth-order differential equations, Int. J. Numer. Methods Engrg. , Vol. 50, 2001, pp.1907–1929.
[17] Wu T.Y., Wang Y.Y., Liu G.R., Free vibration analysis of circular plates using generalized differential quadrature rule, Comput. Methods Appl. Mech. Engrg., Vol. 191, 2002, pp.5365–5380.
[18] Wu T.Y., Liu G.R., Free vibration analysis of circular plates with variable thickness by the generalized differential quadrature rule, Int. J. Solids Struct., Vol. 38, 2001, pp.7967–7980.
[19] Liew K.M., Liu F.L., Differential quadrature method for vibration analysis of shear deformable annular sector plates, J. Sound Vib. Vol. 230, 2000, pp.335–356.
[20] Li X., Zhong H., He Y.Free vibration analysis of sectorial plates by the triangular differential quadrature method, J. Qinhua, 2003.
[21] Wang X., Wang Y., Free vibration analysis of sectorial plates by the new version of differential quadrature method, J. Computer Methods in Applied Mechanics and Engineering, 2004.