مقاومت آنتیبیوتیکی و فراوانی ژنهای حدت fimH، papC وsfa-foc در اشریشیا کلی جدا شده از مدفوع
محورهای موضوعی :
باکتری شناسی
الهام نوری
1
,
لیلا اسدپور
2
1 - دانش آموخته کارشناسی ارشد، گروه زیست شناسی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
2 - عضو هیئت علمی
تاریخ دریافت : 1400/10/15
تاریخ پذیرش : 1401/03/05
تاریخ انتشار : 1401/03/15
کلید واژه:
اسب,
اشریشیا کلی,
مقاومت آنتیبیوتیکی,
ژنهای حدت,
چکیده مقاله :
سابقه و هدف: با توجه به مصرف گسترده مواد ضد میکروبی در دامپزشکی و افزایش تولیدات دامی به نظر میرسد خطر گسترش مقاومت آنتیبیوتیکی در جوامع انسانی بیشتر در ارتباط با حیوانات و حوزه دامپزشکی باشد. در این مطالعه مقاومت آنتیبیوتیکی و فراوانی ژنهای حدت fimH، papC و sfa-foc در اشریشیا کلی جدا شده از مدفوع اسبهای کاسپین در گیلان مورد مطالعه قرار گرفت.
مواد و روشها: در این مطالعه مقطعی، سویههای اشریشیا کلی از مدفوع ۱۵۷ اسب کاسپین به ظاهر سالم به روش کشت و انجام تستهای بیوشیمیایی جداسازی شدند. الگوی مقاومت نسبت به ۱۷ آنتیبیوتیک، به روش انتشار دیسک و فراوانی ژنهای حدت به روش واکنش زنجیرهای پلیمراز در جدایهها بررسی شد.
یافتهها: در بررسی فنوتیپی مقاومت آنتیبیوتیکی جدایهها، بیشترین مقاومت به آنتی بیوتیکهای استرپتومایسین و سولفامتوکسازول-تریمتوپریم بود. ایمیپنم و جنتامایسین موثرترین آنتیبیوتیکها بودند و 51/59 درصد جدایهها الگوی مقاومت چندگانه آنتیبیوتیکی نشان دادند. فراوانی ژنهای حدت fimH، papC و sfa-foc در جدایهها به ترتیب ۹۱، 56/6 و ۳/۳۳ درصد بود. فراوانی هر سه ژن مورد مطالعه در جدایههای MDR بهطور معنیداری بیشتر بود (0/05P<).
نتیجهگیری: نتایج مطالعه حاضر بیانگر آن است که اشریشیا کلیهای جدا شده از مدفوع اسبهای گیلان پتانسیل انتقال مقاومتهای آنتیبیوتیکی از طریق محیط و به مخاطره انداختن بهداشت عمومی را دارند.
چکیده انگلیسی:
Background & Objectives: Due to the widespread use of antimicrobials in veterinary medicine and the increase in livestock production, it seems that the risk of spreading antibiotic resistance in human societies is more related to animals and the veterinary field. In this study, antibiotic resistance and frequency of fimH, papC and sfa-foc virulence genes among Escherichia coli isolated from Caspian horse feces in Guilan were studied.
Materials & Methods: In this cross- sectional study, E. coli isolates were isolated from the feces of 157 apparently healthy Caspian horses by culture method and biochemical tests. Resistance patterns against 17 different antibiotics were determined by disk diffusion method and frequency of virulence genes were assessed by PCR in isolates.
Results: In phenotypic assay of antibiotic resistance, the isolates showed the most resistance to streptomycin and sulfamethoxazole-trimetoprim antibiotics. Imipenem and gentamicin were the most effective antibiotics and 51.59 percent of isolates showed multi drug resistance pattern. The frequency of fimH, papC and sfa-foc virulence genes in isolates were 91%, 56.6% and 33.3%, respectively. Frequency of all of three investigated genes were significantly higher in MDR isolates (P< 0.05).
Conclusion: The results of the present study indicate that Escherichia coli isolated from the feces of horses in Guilan has the potential to transmit antibiotic resistance and threaten public health.
منابع و مأخذ:
References
Levy S. Marshall B. Antibacterial resistance worldwide: causes, challenges and aresponses. Nat Med. 2004: 10: S122–S129.
Graves AK. Liwimbi L. Israel DW. Van Heugten E. Robinson B. Cahoon CW. Lubbers JF. Distribiotion of ten antibiotic resistance genes in E. coli isolates from swine manure, lagoon effluent and soil collected froma lagoon waste application field. Folia microbial. 2011: 56: 131-137.
Daneshgar. P. Rajaei H. Firouzi R. Antibiotic Resistance of Salmonella and Escherichia coli Isolated from chicken in Shiraz, Iran, Journal of Veterinary Research. 2008: 62(6): 341-344 [in Persian].
Cantas L. Shah S. Cavaco L. Manaia C. Walsh F. Popowska M. Garelick H. Bürgmann H. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Frontiers in Microbiology. 2013: 4: 96-102.
Walther B. Tedin K. Lübke-Becker A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control, Veterinary Microbiology. 2017: 200: 71-78.
Van Boeckel TP. brower C. Gilbert M. Grenfell BT. Levin SA. Robinson TP. Teillant A. Laxminarayan R. Global trends in antimicrobial use in food animals. PNAS. 2015: 112: 5649–5654.
Bryan J. Leonard N. Fanning S. katz L. Duggan V. Antimicrobial resistance in commensal faecal Escherichia coli of hospitalised horses. Ir Vet J . 2010: 63: 373-379.
Wolny-Koładka K. Lenart-Boroń A. Antimicrobial resistance and the presence of extended-spectrum beta-lactamase genes in Escherichia coli isolated from the environment of horse riding centers. Environ Sci Pollut Res. 2018: 25: 21789–21800.
Shnaiderman-Torban A. Paitan Y. Arielly H. Kondratyeva K. Tirosh-Levy S. Abells-Sutton G. Navon-Venezia, S. Steinman A. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Hospitalized Neonatal Foals: Prevalence, Risk Factors for Shedding and Association with Infection. Animals. 2019: 9: 600-607.
Abu-Amer AE. Shobrak MY. Altalhi AD. Isolation and antimicrobial resistance of Escherichia coli isolated from farm chicken in taif, Saudi arabia. Jurnal of global antimicrobial resistance. 2018: 15: 65-68.
Wang L. Wang J. Zhu L. Yang L. Yang R. Distribution characteristics of antibiotic resistant bacteria and genes in fresh and composted manures of livestock farms. Science of The Total Environment. 2019: 695: 133781.
Croxen M. Finlay B. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol. 2010: 8: 26–38.
Zeidabadi Nejad M. Amini k. Detection of pap, fim, sfa and afa Genes in Escherichia coli strains Isolated from patients with Urinary Tract Infection by Multiplex-PCR in Kerman, Iran. Jundishapur scientific Medical journal. 2017: 16(4): 393-400 [In Persian].
Bendary MM, Abdel-Hamid MI, Alshareef WA, Alshareef HM, Mosbah RA, Omar NN, Al-Sanea MM, Alhomrani M, Alamri AS, Moustafa WH. Comparative Analysis of Human and Animal E. coli: Serotyping, Antimicrobial Resistance, and Virulence Gene Profiling. Antibiotics. 2022 Apr 21;11(5):552.
Habibi M. Ghavami S. Tayefe Bagherlou J. Bazyar M. Hashemian MM. Comprehensive book of industrial poultry diseases. 2nd ed. Tehran. Nourbakhsh Publishers. 2017 [In Persian].
Boroujeni kiani L. Momtaz H. Virulence factors pattern of Escherichia Coli strain isolated from endometritis in mares in chaharmahal and bakhtiari province. New cell Mol Biotech. 2020: 10(37) 21-34 [In Persian].
Clinical and laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; M100-S20. CLSI document 2010: 30(1): 27-44.
Momtaz H. Karimian A. Madani M. Dehkordi FS. Ranjbar R. Sarshar M. Souod N. Uropathogenic Escherichia coli in Iran, Serogroup distributions, virulence factors and antimicrobial resistance properties. Ann Clin Microbiol Antimicrob. 2013: 12: 8 [In Persian].
Johnson JR. Stell AL. Extended Virulence Genotypes of Escherichia coli Strains from Patients with Urosepsis in Relation to Phylogeny and Host Compromise. the Journal of Infectious Diseases. 2000: 181: 261-272.
Thapa. SP. Shrestha S. Anal AK. Addressing the antibiotic resistance improving the food safety in food supply chain (farm-to-fork) in Southeast Asia. Food Control. 2020:108: 106809.
Tosh PK. McDonald LC. Infection control in the multidrug-resistant era: tending the human microbiome. Clinical infectious diseases. 2012: 54(5): 707-713.
Reshadi P, Heydari F, Ghanbarpour R, Bagheri M, Jajarmi M, Amiri M, Alizade H, Badouei MA, Sahraei S, Adib N. Molecular characterization and antimicrobial resistance of potentially human‐pathogenic Escherichia coli strains isolated from riding horses. BMC Veterinary Research. 2021 Dec;17(1):1-9.
Ahmed MO. Clegg PD. Williams NJ. Baptise KE. Bennet M. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann Clin Microbiol Antimicrob. 2010: 9: 12.
Johns I. Verheyen K. Good L. Rycroft A. Antimicrobial resistance in faecal Escherichia coli isolates from horses treated with antimicrobials: A longitudinal study in hospitalised and non-hospitalised horses. Veterinary Microbiology. 2012: 159(3-4): 381-389.
Yiğin A. Antimicrobial resistance and extended-spectrum beta-lactamase (ESBL) genes in E. coli isolated from equine fecal samples in Turkey. Journal of Equine Veterinary Science. 2021 Jun 1;101:103461.
Ferreira JC. Penha Filho RA. Yorika Kuaye AP. Andrade LN. Chang YF. Costa Darini AL. Virulence potential of commensal multidrug resistant Escherichia coli isolated from poultry in Brazil. Infection, Genetics and Evolution. 2018: 65: 251-256.
Bicalho MLS. Machado VS. Oikonomou G. Gilbert RO. Bicalho RC. Association between virulence factors of Escherichia coli Fusobacterium necrophorum, and Arcanobacteriumpyogenes and uterine diseases of dairy cows. Veterinary Microbiology. 2012: 157(1-2): 125-131.
Carneiro VC, Lessa DAB. Guttmann PM. Magalhaes H. Aquino MHC. Cunha LER. Arais LR. Cerqueira AMF. Virulence, resistance, and genetic relatedness of Escherichia coli and Klebsiella sp. isolated from mule foals. Arq. Bras. Med. Vet. Zootec. 2017: 69(5): 1073-1082.
_||_References
Levy S. Marshall B. Antibacterial resistance worldwide: causes, challenges and aresponses. Nat Med. 2004: 10: S122–S129.
Graves AK. Liwimbi L. Israel DW. Van Heugten E. Robinson B. Cahoon CW. Lubbers JF. Distribiotion of ten antibiotic resistance genes in E. coli isolates from swine manure, lagoon effluent and soil collected froma lagoon waste application field. Folia microbial. 2011: 56: 131-137.
Daneshgar. P. Rajaei H. Firouzi R. Antibiotic Resistance of Salmonella and Escherichia coli Isolated from chicken in Shiraz, Iran, Journal of Veterinary Research. 2008: 62(6): 341-344 [in Persian].
Cantas L. Shah S. Cavaco L. Manaia C. Walsh F. Popowska M. Garelick H. Bürgmann H. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Frontiers in Microbiology. 2013: 4: 96-102.
Walther B. Tedin K. Lübke-Becker A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control, Veterinary Microbiology. 2017: 200: 71-78.
Van Boeckel TP. brower C. Gilbert M. Grenfell BT. Levin SA. Robinson TP. Teillant A. Laxminarayan R. Global trends in antimicrobial use in food animals. PNAS. 2015: 112: 5649–5654.
Bryan J. Leonard N. Fanning S. katz L. Duggan V. Antimicrobial resistance in commensal faecal Escherichia coli of hospitalised horses. Ir Vet J . 2010: 63: 373-379.
Wolny-Koładka K. Lenart-Boroń A. Antimicrobial resistance and the presence of extended-spectrum beta-lactamase genes in Escherichia coli isolated from the environment of horse riding centers. Environ Sci Pollut Res. 2018: 25: 21789–21800.
Shnaiderman-Torban A. Paitan Y. Arielly H. Kondratyeva K. Tirosh-Levy S. Abells-Sutton G. Navon-Venezia, S. Steinman A. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Hospitalized Neonatal Foals: Prevalence, Risk Factors for Shedding and Association with Infection. Animals. 2019: 9: 600-607.
Abu-Amer AE. Shobrak MY. Altalhi AD. Isolation and antimicrobial resistance of Escherichia coli isolated from farm chicken in taif, Saudi arabia. Jurnal of global antimicrobial resistance. 2018: 15: 65-68.
Wang L. Wang J. Zhu L. Yang L. Yang R. Distribution characteristics of antibiotic resistant bacteria and genes in fresh and composted manures of livestock farms. Science of The Total Environment. 2019: 695: 133781.
Croxen M. Finlay B. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol. 2010: 8: 26–38.
Zeidabadi Nejad M. Amini k. Detection of pap, fim, sfa and afa Genes in Escherichia coli strains Isolated from patients with Urinary Tract Infection by Multiplex-PCR in Kerman, Iran. Jundishapur scientific Medical journal. 2017: 16(4): 393-400 [In Persian].
Bendary MM, Abdel-Hamid MI, Alshareef WA, Alshareef HM, Mosbah RA, Omar NN, Al-Sanea MM, Alhomrani M, Alamri AS, Moustafa WH. Comparative Analysis of Human and Animal E. coli: Serotyping, Antimicrobial Resistance, and Virulence Gene Profiling. Antibiotics. 2022 Apr 21;11(5):552.
Habibi M. Ghavami S. Tayefe Bagherlou J. Bazyar M. Hashemian MM. Comprehensive book of industrial poultry diseases. 2nd ed. Tehran. Nourbakhsh Publishers. 2017 [In Persian].
Boroujeni kiani L. Momtaz H. Virulence factors pattern of Escherichia Coli strain isolated from endometritis in mares in chaharmahal and bakhtiari province. New cell Mol Biotech. 2020: 10(37) 21-34 [In Persian].
Clinical and laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; M100-S20. CLSI document 2010: 30(1): 27-44.
Momtaz H. Karimian A. Madani M. Dehkordi FS. Ranjbar R. Sarshar M. Souod N. Uropathogenic Escherichia coli in Iran, Serogroup distributions, virulence factors and antimicrobial resistance properties. Ann Clin Microbiol Antimicrob. 2013: 12: 8 [In Persian].
Johnson JR. Stell AL. Extended Virulence Genotypes of Escherichia coli Strains from Patients with Urosepsis in Relation to Phylogeny and Host Compromise. the Journal of Infectious Diseases. 2000: 181: 261-272.
Thapa. SP. Shrestha S. Anal AK. Addressing the antibiotic resistance improving the food safety in food supply chain (farm-to-fork) in Southeast Asia. Food Control. 2020:108: 106809.
Tosh PK. McDonald LC. Infection control in the multidrug-resistant era: tending the human microbiome. Clinical infectious diseases. 2012: 54(5): 707-713.
Reshadi P, Heydari F, Ghanbarpour R, Bagheri M, Jajarmi M, Amiri M, Alizade H, Badouei MA, Sahraei S, Adib N. Molecular characterization and antimicrobial resistance of potentially human‐pathogenic Escherichia coli strains isolated from riding horses. BMC Veterinary Research. 2021 Dec;17(1):1-9.
Ahmed MO. Clegg PD. Williams NJ. Baptise KE. Bennet M. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann Clin Microbiol Antimicrob. 2010: 9: 12.
Johns I. Verheyen K. Good L. Rycroft A. Antimicrobial resistance in faecal Escherichia coli isolates from horses treated with antimicrobials: A longitudinal study in hospitalised and non-hospitalised horses. Veterinary Microbiology. 2012: 159(3-4): 381-389.
Yiğin A. Antimicrobial resistance and extended-spectrum beta-lactamase (ESBL) genes in E. coli isolated from equine fecal samples in Turkey. Journal of Equine Veterinary Science. 2021 Jun 1;101:103461.
Ferreira JC. Penha Filho RA. Yorika Kuaye AP. Andrade LN. Chang YF. Costa Darini AL. Virulence potential of commensal multidrug resistant Escherichia coli isolated from poultry in Brazil. Infection, Genetics and Evolution. 2018: 65: 251-256.
Bicalho MLS. Machado VS. Oikonomou G. Gilbert RO. Bicalho RC. Association between virulence factors of Escherichia coli Fusobacterium necrophorum, and Arcanobacteriumpyogenes and uterine diseases of dairy cows. Veterinary Microbiology. 2012: 157(1-2): 125-131.
Carneiro VC, Lessa DAB. Guttmann PM. Magalhaes H. Aquino MHC. Cunha LER. Arais LR. Cerqueira AMF. Virulence, resistance, and genetic relatedness of Escherichia coli and Klebsiella sp. isolated from mule foals. Arq. Bras. Med. Vet. Zootec. 2017: 69(5): 1073-1082.