اثر کاربرد گونههای مختلف بیوچار و ریزجانداران حل کننده فسفات بر عملکرد دانه و صفات زراعی گلرنگ
محورهای موضوعی : زراعتابراهیم حیدری 1 , خسرو محمدی 2 , بابک پاساری 3 , اسعد رخزادی 4 , یوسف سهرابی 5
1 - گروه زراعت، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران
2 - گروه زراعت، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران
3 - استادیار گروه زراعت و اصلاح نباتات- سنندج- دانشگاه آزاد اسلامی واحد سنندج- ایران
4 - گروه زراعت، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران
5 - گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه کردستان
کلید واژه: گلرنگ, عملکرد دانه, میکوریزا, باکتری حل کننده فسفات,
چکیده مقاله :
ه منظور بررسی اثر کاربرد گونههای مختلف بیوچار و ریزجانداران حل کننده فسفات بر عملکرد دانه و صفات زراعی گلرنگ آزمایشی در دو سال زراعی 1397 و 1398 در بخشی از اراضی کشاورزی بخش سردرود شهرستان رزن استان همدان به صورت کرتهای خرد شده (اسپلیت پلات) بر پایه طرح بلوک کامل تصادفی با سه تکرار اجرا گردید. عامل اصلی در چهار سطح بیوچار شامل: بیوچار کود گاوی، بیوچار کاه و کلش گندم، بیوچار درخت و شاهد بود. عامل فرعی نیز در پنج سطح شامل کاربرد ریزجانداران حل کننده فسفات شامل دو گونه میکوریزا (Glumus etunicatum ، G. mossea)، Bacillus lentus و Pseudomonas fluorescence و شاهد در نظر گرفته شد. نتایج مقایسه میانگین گویای آن است که بیشترین تعداد طبق در بوته (12/8 و 14/ 8 ) و وزن دانه (60/24 گرم) در تیمارهای تلقیح میکوریزایی و کمترین در تیمار شاهد مشاهده شد، همچنین بیشترین تعداد طبق در بوته (26/8) و وزن دانه (18/24 گرم) نیز در تیمار بیوچار کود دامی بود. نتایج نشان داد که بالاترین عملکرد بیولوژیک (5454 کیلوگرم در هکتار) در تیمارهای تلقیح میکوریزایی حاصل گردید، همچنین کاربرد سایر باکتریهای حل کننده فسفات نیز عملکرد بیولوژیک گلرنگ را در مقایسه با تیمار شاهد افزایش داد.
n order to study the effect of application of different biochar species and phosphate solubilizing microorganisms on soil enzymatic activity and agronomic traits of safflower during two cropping seasons of 2018 and 2019 in a part of cultivated lands of Sardorood district of Razan, Hamedan province, an experiment as split plots on the basis of randomized complete block design with three replications was implemented. The main factor at 4 levels of biochar including: cow manure, wheat straw, wood biochar and control. The sub factors were phosphate solubilizing microorganisms included the mycorrhizal fungi (Glomus etunicatum and G. mosseae), Bacillus lentus, Pseudomonas fluorescence and control. The results of mean comparison showed that highest number of heads per plant (8.12, 8.14) and the maximum seed weight (24.60 g) were observed in mycorrhizal inoculation treatments and the lowest were in control treatment, also the highest number of heads per plant (8.26) and seed weight (24.18 g) was observed in cow manure biochar treatment. The results of mean comparison showed that the highest biological yield (5454 kg/ha) was obtained in mycorrhizal inoculation treatments. Also, application of other phosphate solubilizing bacteria increased the biological yield of safflower compared to the control treatment.
1 -حبیبزاده، ی، 1385 .بررسی اثر تراکم بوته بر روند رشد ارتفاع بوته و عملکرد دانه سه ژنوتیپ ماش در منطقه
اهواز، نهمین کنگره علوم زراعت و اصالح نباتات ایران، ص 70.
2 -ملکوتی، م. 1375 .کشاورزی پایدار و افزایش عملکرد با بهینه سازی مصرف کود در ایران. انتشارات نشر آموزش
کشاورزی.
3. Abdel-Salam, E., Alatar, A., and El-Sheikh, M. A. 2018. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi Journal of Biological Sciences. 25(8): 1772–1780.
doi:10.1016/j.sjbs.2017.10.015.
4. AL-Karaki, G., McMichael, B., and Zak J. 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza. 14(4): 263-269.
5. Amoah-Antwi, C. 2020. Efficacy of woodchip biochar and brown coal waste as stable sorbents for abatement of bioavailable cadmium, lead and zinc in soil. Water Air Soil Pollut. 231, 515.
6. Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. 2008.
Using poultry litter biochars as soil amendments. Australian Journal of Soil Research 46:437. DOI: 10.1071/sr0803.
7. Johri, A.K., Oelmüller, R., Dua, M., Yadav, V., Kumar, M., Tuteja, N., Varma, A., Bonfante, P., Persson, B.L. and Stroud, R.M. 2015. Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Frontiers in Microbiology. 6: 1-13.
8. Mitchell, P.J., Simpson, A.J., Soong, R., and Simpson, M.J. 2015. Shifts in
microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biology and Biochemistry. 81:244-254. https://doi.org/10.1016/j.soilbio.2014.11.017
9. Mohammadi, K., and Rokhzadi, A. 2012. An integrated fertilization system of canola (Brassica napus L.) production under different crop rotations. Industrial Crops and Products. 37: 264-269. http://dx.doi.org/10.1016/j.indcrop.2011.12.023.
10. Novak, J. M. 2019. Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar. 1: 97–114.
11. Radhakrishnan, R., and Lee, I. J. 2013. Regulation of salicylic acid, jasmonic acid and fatty acids in cucumber (Cucumis sativus L.) by spermidine promotes plant growth against salt stress. Acta Physiologiae Plantarum, 35: 3315-3322.
12. Ramalingam, R., Abeer, H., and Elsayed, F. A. 2017. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in Physiology. 8: 1-14.
13. Rengel, Z., and Marschner, P. 2005. Nutrient availability and management in the rhizosphere of plant genotypes. New Phytol. 168: 305-312. https://doi.org/10.1111/j.1469-8137.2005.01558.x
14. Rodriguez, H., and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion (review paper). Biotechnology Advances. 17: 319-339.
15. Rowell, D. L., Harris, P. J. and Ortas, I. 2004. Effect of mycorrhizae and pH Rhizocylinder Technique. Communications in Soil Science and Plant Analysis. 35 (7/8): 1061-1080.
16. Saboor, A., Arif Ali, M., Danish, S., Ahmed, N., Fahad, S., Datta, R., Ansari, M., Nasif, O., and Glick, B. 2020. Effect of arbuscular mycorrhizal fungi on the physiological functioning of maize under zinc-deficient soils. Scientific Reports.11: 18468.
17. Sattar, M. A., and Gaur, A. C. 1987. Production of Auxins and Gibberellins by phosphate dissolving microorganisms. Zentralbl. Mikrobiol. 142: 393-395.
18. Taiz, L., and Zeiger, E. 2010. Plant physiology, 5th ed. Sinauer Associates Inc., Sunderland, MA, USA.
19. Van Zwieten, L., Kimber, S., Morris, S., Chan K.Y., Downie A., Rust J., Joseph S., Cowie A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil. 327: 235-246. DOI:
10.1007/s11104-009-0050-x.
20. Weisany, W., Raei, Y., and Ghasemi Golezani, K. 2016. Funneliformis mosseae alters seed essential oil content and composition of dill in intercropping with common bean. Ind Crops Prod. 79: 29-38. https://doi.org/10.1016/j.indcrop.2015.10.041.
21. Yeboah, E., Asamoah, G., Ofori, P., Amoah, B., and Osei, K. 2020. Method of biochar application affects growth, yield and nutrient uptake of cowpea. Open Agriculture. https://doi.org/10.1515/opag-2020-0040.
22. Yu, Xuan., Xu, Liu., and Tian-hui, Zhu. 2014. Walnut growth and soil quality after inoculating soil containing rock phosphate with phosphate-solubilizing bacteria. Science Asia, 40(1): 21-27.
23. Zhu, Y., Wang, H., Lv, X., Zhang, Y., and Wang, W. 2020. Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system. Scientific Reports, 10: 20112. change at the root-soil interface on phosphorus uptake by sorghum using a
_||_