Estimation of Inbreeding Coefficients Using Pedigree and Microsatellite Markers and Its Effects on Economic Traits of Shirvan Kordi Sheep
محورهای موضوعی : Camelس. نقویان 1 , س. حسنی 2 , م. آهنی آذری 3 , ع.ر. خان احمدی 4 , د.ع. ساقی 5 , ن. مامیزاده 6
1 - Department of Animal and Poultry Genetics, Breeding and Physiology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
2 - Department of Animal and Poultry Genetics, Breeding and Physiology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
3 - Department of Animal and Poultry Genetics, Breeding and Physiology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
4 - Department of Animal Science, Gonbad University, Gonbad, Iran
5 - Mashad Agriculture and Natural Resources Research Center, Mashad, Iran
6 - Department of Animal and Poultry Genetics, Breeding and Physiology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
کلید واژه: Sheep, growth traits, inbreeding, genetic markers,
چکیده مقاله :
In this study, pedigree data of 7170 lambs produced from 177 rams and 2182 ewes collected during 1989 to 2009 in the Shirvan Kordi sheep breeding station, were used for calculating inbreeding coefficients. The impact of inbreeding on the studied traits was investigated by including inbreeding coefficients for each animal as a covariate in the animal model. Average inbreeding coefficient of the flock in base year, 1989, was estimated as 0.668%. The low average inbreeding in the flock could be ascribed to the structured breeding regime of the station for preventing mating among relatives. Totally, 23.3% of the animals were inbred with average inbreeding coefficient of 2.87%. Out of these, 1668 animals were inbred including 823 males and 845 females with the mean inbreeding coefficients of 2.81% and 2.93%, respectively. Coefficients of inbreeding were also estimated in this population using 6 microsatellite markers (BM8125, BMS2361, BM6526, BM6526, BMS1004 and BM6444) and 100 blood samples. Within population, inbreeding F-statistic (FIS) ranged from -0.1859 (BM6526) to 0.3329 (BM6438). The FIS estimates were positive for BM6438 and BM6444 loci (0.3329 and 0.2287), respectively and estimates for the other loci were negative. Average inbreeding coefficients based on molecular markers was estimated as 0.2617%. Birth weight, weaning weight, body weight at 6 months, body weight at 9 months, body weight at 12 months, annual wool production and number of lambs per ewe lambing were changed by -0.0131, 0.0795, 0.0013, -0.0653, -0.0921, 0.0083 and -0.023 kg, respectively for every one percent increase in inbreeding.
در این پژوه، میزان همخونی 7170 رأس بره حاصل از 177 قوچ و 2182 میش که در طی سالهای 1388-1368 از گله گوسفند کردی ایستگاه پرورش و اصلاحنژاد شیروان جمعآوری شده بود، مورد بررسی قرار گرفت. اثر همخونی بر صفات مورد مطالعه با مدل حیوانی که در آن ضریب همخونی حیوان به عنوان متغیر کمکی در نظر گرفته شده بود، بررسی شد. میانگین ضریب همخونی بر اساس سال پایه 1368، 668/0 درصد برآورد شد. میانگین کم ضریب همخونی در گله را میتوان به ساختار پرورش ایستگاه و تلاش مسئولین ایستگاه برای کنترل همخونی و جلوگیری از آمیزشهای خویشاوندی نسبت داد. از کل شجره تحت مطالعه 3/23 درصد حیوانات، همخون بودند و میانگین ضریب همخونی آنها 87/2 درصد بود. از 1668 رأس حیوان همخون، 823 رأس نر و 845 رأس ماده بودند و میانگین ضریب همخونی آنها بهترتیب 81/2 و 93/2 درصد بود. برآورد ضریب همخونی در جمعیت گوسفند کردی با استفاده از 6 جایگاه ریزماهوارهای (BM8125، BMS2361، BM6526، BM6438، BMS1004 و BM6444) و 100 نمونه خون انجام گرفت. ضریب همخونی بر اساس شاخص رایت (FIS) در جمعیت گوسفندان کردی ایستگاه پرورش و اصلاح نژاد شیروان، از 1859/0- برای جایگاه BM6526 تا 3329/0 در جایگاه BM6438 متغیر بود. در جایگاههای BM6438 و BM6444 مقدار شاخص FIS، مثبت بود و بهترتیب 3329/0 و 2287/0 برآورد شد و برای سایر جایگاهها منفی بود. میانگین ضریب همخونی بر اساس دادههای مولکولی، 2617/0 درصد به دست آمد. صفات وزنهای تولد، شیرگیری، شش ماهگی، نه ماهگی، یک سالگی، تولید پشم سالیانه (در اولین پشمچینی) و تعداد برهها در هر زایش میش (اولین زایش) به ازای افزایش یک درصد همخونی به ترتیب 0131/0-، 0795/0، 0013/0، 0653/0-، 0921/0- و 0083/0 کیلوگرم و 023/0- رأس تغییر نمودند.
A´lvarez I., Gutie´rrez J.P., Royo L.J., Ferna´ndez I. and Goyache F. (2009). Quantifying diversity losses due to selection for scrapie resistance in three endangered Spanish sheep breeds using microsatellite information. J. Prev. Vet. Med. 91, 172-178.
Akhtar P., Khan M.S., Mohiuddin G. and Abdullah M. (2000). Effect of inbreeding on different performance traits of Hissardale sheep in Pakistan. Pakistan Vet. J. 20(4), 169-172.
Alsheikh S. (2005). Effect of inbreeding on birth and weaning weights and lamb mortality in a flock of Egtptian Barki sheep. ISAH-Warsaw. Poland. 1, 187-191.
Aminafshar M., Amirinia C. and Torshizi R.V. (2008). Genetic diversity in buffalo population of guilan using microsatellite marker. J. Anim. Vet. Adv. 7(11), 1499-1502.
Amos W., Worthington Wilmer J., Fullard K., Burg T.M., Croxall J.P., Bloch D. and Coulson T. (2001). The influence of parental relatedness on reproductive success. Proc. R Soc. Lond. B. 268, 2021-2027.
Analla M., Montilla J.M. and Serradilla J.M. (1999). Study of the response to inbreeding for meat production in Merino sheep. J. Anim. Breed. Genet. 116, 481-488.
Analla M., Montilla J.M. and Serradilla J.M. (1998). Analyses of lamb weight and ewe litter size in various lines of Spanish Merino sheep. J. Small Rumin. Res. 29, 255-259.
Barczak E., Wolc A., Wojtowski J., Slosarz P. and Szwaczkowski T. (2009). Inbreeding and inbreeding depression on body weight in sheep. J. Anim. Feed Sci. 18, 42-50.
Barker J.S.F., Tan S.G., Moore S.S., Mukherjee T.K., Matheson J.L. and Selvaraj O.S. (2001). Genetic variation within and relationship among populations of Asian goats (Capra hircus). J. Anim. Breed. Genet. 118, 213-233.
Bishop M.D., Kappes S.M., Keele J.W., Stone R.T., Sunden S.L.F., Hawkins G.A., Toldo S.S., Fries R., GroszM.D., Yoo J. and Beattie C.W. (1994). A genetic linkage map for cattle. J. Genet. 186, 619-639.
Bhatia S. and Arora R. (2008). Genetic diversity in Kheri - A pastoralists developed Indian sheep using microsatellite markers. Ind. J. Biotechnol. 7, 108-112.
Botstein D., White R.L., Skolnick M. and Davis R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32(3), 314-331.
Callen D.F., Thompson A.D., Shen Y., Phillips H.A., Richards R.I., Mulley J.C. and Sutherland G.R. (1993). Incidence and origin of “null” alleles in the (AC) n microsatellite markers. Am. J. Hum. Genet. 52, 922-927.
Ceyhan A., Kaygisiz A. and Sezenler T. (2011). Effect of inbreeding on preweaning growth traits and survival rate in Sakiz sheep. J. Anim. Plant. Sci. 21(1), 1-4.
Ceyhan A., Koncagul S. and Sezenler T. (2009). The effect of inbreeding on birth and weaning weights of Gokceada sheep. J. Agric. Fac. HR. U. 13(3), 11-16.
Charlesworth D. and Charlesworth B. (1987). Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237-268.
Coltman D.W., Pilkington J.G., Smith J.A. and Pemberton J.M. (1999). Parasite-mediated selection against inbred Soay sheep in a freeliving. Island Popul. 53, 1259-1267.
Dario C. and Bufano G. (2003). Efecto de la endogamia sobre la producción láctea en la raza ovina Altamurana (effect of imbreeding on milk production in Altamurana sheep breed). Arch. Zootec. 52, 401-404.
Dobson F.S., Chesser R.K., Hoogland J.L., Dugg D. and Foltz D.W. (1998). Breeding groups and gene dynamics in a socially structured population of prairie dogs. J. Mamm. 79, 671-680.
Dorostkar M., Faraji Arough H., Shodja J., Rafat S.A., Rokouei M. and Esfandyari H. (2012). Inbreeding and inbreeding depression in Iranian Moghani sheep breed. J. Agric. Sci. Technol. 14, 549-556.
El Nahas S.M., Hassan A.A., Abou Mossallam A.A., Mahfouz E.R., Bibars M.A., Oraby A.S. and Hondt H.A. (2008). Analysis of genetic variation in different sheep breeds using microsatellites. African J. Biotechnol. 7(8), 1060-1068.
Elfawal M.A. (2006). Molecular genetic diversity in characteristics of some Egyptian sheep breeds. MS Thesis. Ain Shams Univ., Cairo, Egypt.
Ercanbrack S.K. and Knight A. (1991). Effects of inbreeding on reproduction and wool production of Rambouillet, Targhee, and Columbia ewes. J. Anim. Sci. 69, 4734-4744.
Eteqadi B., Ghavi Hossein-Zadeh N. and Shadparvar A.A. (2014). Population structure and inbreeding effects on body weighttraits of Guilan sheep in Iran. J. Anim. Sci. 119, 45-51.
Falconer D.S. and Mackay T.F.C. (1996). Introduction to Quantitive Genetics. Harlow, Essex, London, UK.
Frankham R., Ballou J.D. and Briscoe D.A. (2002). Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UK.
Ghavi Hossein-Zadeh N. (2012a). Inbreeding effects on body weight traitsof Iranian Moghani sheep. J. Arch. Tierz. 55, 171-178.
Gutierrez J.P. and Goyache F. (2005). MolKin: a computer program for genetic analysis of populations using molecular coancestry information. J. Hered. 96, 718-721.
Hassan A.A., Abou Mosallam H.A., Oraby H.A., Hondt D. and El Nahas S.M. (2003). Genetic diversity of three sheep breeds in egypt based on microsatellitees analysis. J. Engin. Biotechnol. 1(1), 141-150.
Hoda A., Vegara M. and Bozgo V. (2010). Genetic diversity of Recka sheep breed in Albania based on 15 microsatellite markers. Pp. 365-367 in 2nd Balkan Conf. Biol. Plovdiv, Bulgaria.
Hussain A., Akhtar P., Ali S., Younas M. and Javed K. (2006a). Effect of inbreeding on pre-weaning growth traits in Thalli sheep. Pakistan J. Agric. Sci. 26, 138-140.
Hussain A., Akhtar P., Ali S., Younas M. and Javed K. (2006b). Effect of inbreeding on post-weaning growth traits of Thalli sheep in Pakistan. Pakistan J. Agric. Sci. 43(1), 89-92.
Ibrahim M., Ahmad S., Ahmad Swati Z. and Sajjad Khan M. (2010). Genetic diversity in Balkhi, Hashtnagri and Michni sheep populations using SSR markers. African J. Biotechnol. 9(45), 7617-7628.
Kumar S., Gupta T., Kumar N., Dikshit K., Navani N., Jain P. and Nagarajan M. (2006). Genetic variation and relationships among eight Indian riverine buffalo breeds. J. Mol. Ecol. 15, 593-600.
Lamberson W.R. and Thomas D.L. (1984). Effects of inbreeding in sheep: a review. Anim. Breed. Abstr. 52, 287-297.
Laval G., Iannuccelli N., Legault C., Milan D., Groenen M.A.M., Giuffra E., Andersson L., Nissen P.H., Jorgensen C.B., Beeckmann P., Geldermann H., Foulley J.L., Chevalet C. And Ollivier L. (2000). Genetic diversity of eleven European pig breeds. J. Genet. Select. Evol. 32, 187-203.
Lawson R., Kofron C.P. and Dessauer H.C. (1989). Alloenzyme variation in natural populations of Nile crocodile. Am. Zool. 29, 863-871.
Luikart G., Biju-Duval M.P., Ertugral O., Zagdsuren Y., Maudet C. and Taberlet P. (1999). Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats (Capra hircus). Anim. Genet. 30, 431-438.
Lukas F.K. and Donald M.W. (2002). Inbreeding effects in wild populations. Ecol. Evol. 17(5), 230-241.
Lush J.L. (1945). Animal Breeding Plans. Iowa State College Press, Ames, Iowa.
MacKinnon K.M. (2003). Analysis of inbreeding in a closed population of crossbred sheep. MS Thesis. Virginia Polytechnic Institute and State Univ., Blacksburg, Virginia.
Mandal A.K., Pant P.K., Rout S.A. and Singh R.R. (2002). Influence of inbreeding on growth traits of Muzaffarnagari sheep. Indian J. Anim. Sci. 72, 988-990.
Mehmannavaz Y., Vaez Torshizi R., Salehi A. and Shorideh A. (2002). Inbreeding and its effect on production traits in Iranian Baluchi sheep. Pp. 263-268 in Proc. 1st Iranian Semin. Genet. Breed. Appl. Livest. Poult. Aquat. Tehran, Iran.
Meuwissen T.H.E. and Luo Z. (1992). Computing inbreeding coefficient in large populations. Genet. Sel. Evol. 24, 305-309.
Meyer K. (2000). DFREML: program to estimate variance components by restricted maximum likelihood using a derivative-free algorithm. User notes. Animal Genetic and Breeding Unit. University of New England, Armidle, New South Wales.
Mokhtari M.S, Moradi Shahrbabak M., Esmailizadeh A.K., Moradi Shahrbabak H. and Gutierrez J.P. (2014). Pedigree analysis of Iran-Black sheep and inbreeding effectson growth and reproduction traits. J. Anim. Sci. 116, 14-20.
Norberg E. And Sorensen A.C. (2007). Inbreeding trend and inbreeding depression in the Danish populations of Texel, Shropshire, and Oxford Down. J. Anim. Sci. 85, 299-304.
Pedrosa V.B., Santana Jr.M.L., Oliveira P.S. Eler. and Ferraz J.B.S. (2010). Population structure and inbreeding effects on growth traits of Santa Inês sheep in Brazil. J. Small Rumin. Res. 93, 135-139.
Pemberton J.M., Slate J., Bancroft D.R. and Barrett J.A. (1995). Non amplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol. Ecol. 4, 249-252.
Pramod S., Kumarasamy P., Rosalyn Mary Chandra A., Sridevi P. and Rahumathulla P.S. (2009). Molecular characterization of vembur sheep (Ovis aries) of south India based on microsatellites. Indian J. Sci. Technol. 2(11), 55-58.
Radha P., Sivaselvam S.N., Kumarasamy P. and Kumanan K. (2011). Genetic diversity and bottleneck analysis of kilakarsal sheep by microsatellite markers. Indian J. Biotechnol. 10, 52-55.
Sanguinetti C.J., Neto E.D. and Simpson A.J.G. (1994). Rapid silver staining and recovery of PCR product separated on polyacrylamide gels. Biotechniques. 17, 915-919.
Sargolzaei M., Iwaisaki H. and Colleau J.J. (2006). Contribution, Inbreeding F, Coancestry (CFC): A Software Package for Pedigree Analysis and Monitoring Genetic Diversity. Release 1.0. NiigataUniversity, Niigata, Japan.
Selvaggi M., Darioa C., Peretti V., Ciotolac F., Carnicella D. and Darioa M. (2010). Inbreeding depression in Leccese sheep. J. Small Rumin. Res. 89(1), 42-46.
Sharifi S., Amirinia E.C., Lavaf A., Farasati C. and Aminafshar M. (2009). Genetic variation among different ecotypes of the Iranian Sanjabi sheep. J. Anim. Vet. Adv. 8(6), 1173-1176.
Surridge A.K., Ibrahim K.M., Bell D.J., Webb N.J., Rico C. and Hewitt G.M. (1999). Fine-scale genetic structuring in a natural population of European wild rabbits (Oryctolagus cuniculus). Mol. Ecol. 8, 299-307.
Stone R.T., Pulido J.C. and Duyk G.M. (1995). A small insert genomic library highly enriched for microsatellite repeat sequences. J. Mamm. Genom. 6, 714-724.
Stone R.T., Kappes S.M. and Keele J.W. (1997). Characterization of 109 bovine microsatellites. J. Anim. Genet. 28, 62-65.
Swanepoel J.W., Van Wyk J.B., Cloete S.W.P. and Delport G.J. (2007). Inbreeding in the Dohne Merino breed in south Africa. South African J. Anim. Sci. 37(3), 176-179.
Van Wyk J.B., Fair M.D. and Cloete S.W.P. (2009). The effect of inbreeding on the production and reproduction traits in the Elsenburg Dormer sheep stud. J. Live. Sci. 120, 218-224.
Wang Z., Yang Z., Ma Y., Wang Q., Mao Y., Chang H., Zhou Q. and Xu M. (2007). Analysis of genetic diversity among seven goat populations in the middle and lower valley of Yangtse river and southeast coastal regions in China. Front. Agric. China. 1(3), 324-328.
Yeh F.C., Yang R.C. and Boyle T. (1999). POPGENE: Microsoft Windows Based Freeware for Population Genetic Analysis. Molecular Biology and Technology Center, Unversity of Alberta. Canada.
Zajc I., Mellersh C.S. and Sampson J. (1997). Variability of canine microsatellites within and between different dog breeds. Mamm. Genome. 8, 182-185.