• Home
  • احمد شرافتی
  • OpenAccess
    • List of Articles احمد شرافتی

      • Open Access Article

        1 - Spatial Pattern of Sediment Yield by Sediment Structural Connectivity Model in the Taleghan Watershed, Iran
        Mohammad Ali Hilou Seyed Abbas Hosseini Ahmad Sharafati
        Background and Aim: Nowadays, due to the importance of sediments in watersheds, the integrated watershed management in the country requires a specific framework in planning related to monitoring and control of sediments.One of the most effective methods is the use of se More
        Background and Aim: Nowadays, due to the importance of sediments in watersheds, the integrated watershed management in the country requires a specific framework in planning related to monitoring and control of sediments.One of the most effective methods is the use of sediment connectivity index (IC). Connectivity process is an innovative concept to understand the processes which occur in the watershed area that affect water flow and sediment movement at different spatial-temporal scales. This index explains the degree of connection of the sediment flow throughout the watershed, especially between the sediment source and the downstream area, and in a way, expresses the sediment delivery ratio. Therefore, the current research is conducted with the aim of investigating the sediment connectivity in Taleghan watershed of Alborz province to extract the sediment connectivity index map and also verify the results with field investigations.Method: In this research, in order to investigate the spatial pattern of sediment production in the watershed, the sediment connectivity map of the basin was drawn from the method presented by Borselli et al. and the definition of connectivity index (IC). For this purpose, at first, topographic data from 30-Meter Digital Elevation Model and vegetation data at 10- and 30-meters spatial resolution are obtained with Sentinel-2A and Landsat 8 images, respectively, and by using data layers such as the average slope gradient, the average weighting factor and the upslope contributing area the amount of upstream component of the flow starting path in sediment transport was calculated. Then, using the layers of the length towards the downslope path, the weight factor of each cell and finally the slope gradient of each cell, the downstream component in the sediment connectivity network was calculated and by referring to catchment outlet in the ArcGIS 10-2-2 software, the connectivity index for all pixels Calculated and the sediment connectivity map was drawn. The IC can assume values ranging from -∞ to +∞ and as IC grows toward +∞, the connectivity increases, finally in order to evaluate the results of the field connection index model (FIC), it is implemented in 30 points of the watershed and the correlation between the IC index and FIC in these points are evaluated. Results: According to the findings of this research as well as the fitting of IC sediment connectivity index values with FIC field sediment connectivity index in 30 points, the relationship between these two indicators is linear. The coefficient of determining the output of the model with a spatial accuracy of 30 meters was obtained with a numerical value of 0.62, It shows the higher accuracy of the sediment connectivity index results with a spatial resolution of 10 meters compared to 30 meters. Although the distribution of the points is irregular in some cases, the general trend of the results shows that with the increase in the amount of IC connection, the amount of FIC field computing sediment connection has also increased linearly. In calculating the index of connectivity, the factors such as the shape, slope and roughness of the basin which are easily accessible due to the less data requirement and high efficiency, can be the basis for improving the estimation of sedimentation models.Conclusion: In this research, the results show that the sediment connectivity index with a spatial accuracy of 10 meters has a higher accuracy than the connectivity index with a spatial accuracy of 30 meters. In addition, the results demonstrate the slope and the vegetation factor are critical parameters in the sedimentation of the Taleghan watershed. It is also worth mentioning that in order to investigate the effect of the watershed area and the principal waterway length, the results of the sediment connectivity index can be evaluated more precisely at the sub-basin and even the hillslopes. Considering the importance of these items in the sedimentation of each sub-basin, including the flow direction map and flow accumulation in the assumptions of this model, is one of the advantages of this technique. The other important advantage of this model is its low data requirement, which can greatly reduce the complexity and data requirements of existing erosion and sedimentation models. Manuscript profile
      • Open Access Article

        2 - Application of New Agricultural Drought Index Based on Soil Moisture and Modified Vegetation Index Using Remote Sensing Data of SMAP and TERRA
        Aliakbar Karamvand Seyed Abbas Hosseini Ahmad Sharafati
        Background and Aim: There are always challenges of spatial and temporal resolution in-situ measurement methods of factors affecting drought phenomena, and the presence of human operators is required. However, due to remote sensing's ability to measure data on the entire More
        Background and Aim: There are always challenges of spatial and temporal resolution in-situ measurement methods of factors affecting drought phenomena, and the presence of human operators is required. However, due to remote sensing's ability to measure data on the entire surface of the planet with an acceptable spatial and temporal resolution, its use in controlling and observing drought has grown more than ever, and it has become a powerful tool in the hands of experts. In this study, based on two components of surface soil moisture and modified vegetation index (EVI) by applying remote sensing data, a new agricultural drought index named (SMADIN) is proposed.Method: To achieve the goal of proposing a drought index based on soil moisture, surface soil moisture data from the SMAP satellite of 5 cm depth was used. These data were validated before use against daily field measurements provided by the Iranian Meteorological Organization over a 250-day period. Validation step error was evaluated using the root mean square error method between satellite data and field measurements. Furthermore, the EVI index was calculated using data from the TERRA satellite and the MODIS sensor. Eventually, an analytical method is used to propose a drought index based on soil moisture. In order to compare the performance of this index in different weather conditions, two regions were chosen, one representing a dry climate and the other a wet climate. Then, the correlation matrix was plotted by the Pearson method for SMADIN agricultural drought index versus vegetation health index (VHI) and the results were discussed.Results: Validation showed that field data measured in land use similar to remote sensing had an average root mean square error of 0.05 .The results indicate that the new agricultural drought index correlates up to 96% with VHI in the humid climate and 98% in arid regions. In addition, a 5-year comparison of the new SMADI and VHI time series in the study area demonstrates synchrony in peaks, minimums, increases, and decreases.Conclusion: An agricultural drought index based on soil moisture is proposed in this study. We believe that, in recent years, when the lifetime of the SMAP satellite data exceeds 7 years, it is possible to use this index in future studies. Considering the possible error of SMAP and TERRA data in providing drought index, it is suggested to use this index in future studies in dry regions such as the central and southern regions of Iran. Manuscript profile
      • Open Access Article

        3 - Evaluation of Rainfall-Runoff Model in the Simulation of Flood Hydrograph in April 2018; a Case Study of Karkheh Basin
        Najmeh Fooladi Ahmad Sharafati Tayeb Raziei
        Background and Aim: Heavy and consecutive rains at early April of 2018 led to severe floods in large parts of Iran, especially in the Karkheh basin, which was accompanied by huge damages. The average rainfall in the Karkhe dam basin for the event of April 4-7, 2018 was More
        Background and Aim: Heavy and consecutive rains at early April of 2018 led to severe floods in large parts of Iran, especially in the Karkheh basin, which was accompanied by huge damages. The average rainfall in the Karkhe dam basin for the event of April 4-7, 2018 was about 87 mm, and for the event of April 11-17, 2018, it was nearly 108 mm. For the flood management by the reservoir, estimation of the peak discharge and flood hydrograph is essential in order to predict the hydrological behavior of the basin. Rainfall-runoff models that are used to simulate flood hydrographs are one of the methods of estimating runoff and a suitable tool for investigating and evaluating hydrological processes, water resources, and flood management.Method: Since the estimation of peak discharge and flood hydrograph has great important to predict the hydrological behavior of the basin and also to take the necessary measures to reduce the flood risk, the present study was conducted by using HEC-HMS model to simulate the rainfall-runoff events during 2007-2018 in the Karkheh Basin .By using this model capabilities and the data from some hydrometric and meteorological stations in the basin, the volume and peak discharge of floods in that period were estimated. Because Seymareh dam impoundment has started since 2013; two separate basin models were developed and for running the model, 11 flood events were obtained then, the basin parameters were calibrated based on six events and the others were used for validation. In the process of developing the basin model, the SCS Curve Number method is used to calculate basin runoff losses and convert rainfall to runoff, the Clark Unit Hydrograph method and the Return flow method to calculate the base flow, the Muskingum method for hydrological routing, and the Weighted average method for spatial data analysis of rainfall. The Outlet Structure method was used for routing the reservoirs of Karkheh and Seymareh dams.Results: Comparing the initial simulation results of the model with the observed values at the outlet of the basin and some hydrometric stations of the basin showed that the hydrograph model overestimates the flow. Therefore, using the residual squaredsum objective function, basin parameters (CN, time concentration, storage coefficient, initial absorption, and recession constant) were calibrated. After calibration of parameters, the results showed that the calculated hydrographs were in good agreement with the Observational hydrographs in the Karkheh and Seymareh dams. Next, to check the accuracy and confirm the results, the model was validated by the five new rainfall events and to evaluate the efficiency of the model used in this stage, the Nash-Sutcliffe indices and the simulated variance coefficient were used.Conclusion: Comparing the calculated results with the flood observational values (peak discharge) using the correlation coefficient (R2) showed that there is a relatively good agreement between simulation and observation in sub-basins 5, 2, 7, and 1 (0.92, 0.73, 0.73 and 0.70, respectively). Also, the model efficiency index values in the validation period for the Nash-Sutcliffe index (0.33-0.99) and simulation variance coefficient (0-0.73) for the outlet of sub-basins 9, 6, 5, 1, and 8 are favorable and the HEC-HMS model approximately can provide an acceptable estimation of the flood hydrograph. So, it can be well-analyzed how the way flood events are formed in the Karkheh basin. Also, the sensitivity analysis of the model parameters showed that the curve number parameter (CN) has a greater effect on the changes in the objective function than other basin parameters. Manuscript profile
      • Open Access Article

        4 - Evaluation of Time Series Analysis Based on Wavelet Function on River Flow Simulation
        Vahed Eslamitabar Ahmad Sharafati Farshad Ahmadi Vahid Rezaverdinejad
        Introduction: Using the values analyzed by the wavelet function can increase the accuracy of the simulations. Considering the climatic changes and the increase of extreme values in recent years, in this study, we made an effort that the effect of signal processing under More
        Introduction: Using the values analyzed by the wavelet function can increase the accuracy of the simulations. Considering the climatic changes and the increase of extreme values in recent years, in this study, we made an effort that the effect of signal processing under the name of wavelet transformation in improving the performance of random forest model in simulating monthly river flow in Siminehrood and Mahabadchai sub-basins in the south of Lake Urmia has been discussed and investigated in the period of 1971-2019. Materials and Methods: In this study, the accuracy of the random forest model has been investigated in two steps of training and testing. At first, the random forest model was evaluated in two phases of training and testing in rainfall-runoff simulation in the south of Lake Urmia basin. Nash-Sutcliffe statistics and root mean square error were used to evaluate the performance and error rate of the studied models, respectively. In the next step, after investigating the performance of the random forest model, the time series of rainfall and river flow in the studied basins were analyzed using the wavelet function. In this regard, two analysis levels (level 1 and 2) and two Haar and Daubechies wavelet functions were used. Finally, using the random forest model, rainfall-runoff simulation based on the wavelet theory was done under the name of W-RF model. Results and Dissection: At First, the random forest model was investigated in two phases of training and testing, and the simulation results of the river flow values showed that the simulated values were within the 95% confidence interval, and the error rate of the river flow simulation using the RMSE statistic is 3.22 and 8.91 cubic meters per second in the test phase for Mahabadchai and Siminehrood sub-basins, respectively. In order to investigate the effect of time series analysis on the performance of the RF model, wavelet theory and Haar and Daubechies 4 wavelet functions were used in decomposition levels 1 and 2. By estimating the accuracy and performance of the hybrid W-RF model in 4 input patterns, the best pattern was selected based on the RMSE and NSE model evaluation criteria. The research results showed that for the Haar wavelet function in level 1 decomposition has better performance and error rate than level 2 type in both sub-basins. In this study, the Daubechies wavelet at level 1 in the test phase has provided the best performance and the lowest error rate in the simulation of the river flow values in the studied sub-basins and has been able to reduce the error rate in the two sub-basins of Mahabadchai and Siminehrood respectively by about 89 and 80 percent compared to the random forest model. Conclusion: Finally, by comparing the RF and W-RF models, the simulation results of river flow in the two studied sub-basins showed that the integrated W-RF model was able to reduce the error rate in the two sub-basins of Mahabadchai and Siminehrood to reduce by 89 and 80% respectively. Considering the increase in simulation complexity with the involvement of wavelet theory, the error recovery rate and model performance are acceptable. The integrated W-RF model in this study provides reliable results for the simulation of river flow data in order to support decision-making and risk analysis in the exploitation of downstream reservoirs and the management of water resources in sub-basins. The obtained results can be used in the design of water resources systems. Manuscript profile