Phytochemical studies of Tetrataenium nephrophyllum and anti-acetylcholinesterase activities
Subject Areas : Natural Products: Isolation and CharacterizationMehdi Abbasi 1 , Marzie Omrani 2 , Leila Raiatparvar Malieki 3 , Ali Sonboli 4 , Samad Nejad Ebrahimi 5
1 - Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
2 - Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
3 - Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
4 - Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
5 - Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
Keywords: Phytochemical profiling, Apiaceae, coumarin, Molecular docking,
Abstract :
Tetrataenium nephrophyllum belonging to the Apiaceae family grows widely in the West Azerbaijan province of Northwestern Iran. It is an aromatic plant that has been used as food spices by local people. In this research work, the phytochemical composition of n-hexane extract from the aerial parts of this plant has been investigated. The fractionation of the n-hexane extract by normal phase column chromatography resulted in the isolation, purification, and identification of five compounds. The structural elucidation was accomplished by extensive spectroscopic methods, including 1D and 2D NMR experiments (1H-NMR, H-H-COSY, HSQC, HMBC, and NOESY) as well as ESI-MS analysis. The isolated compounds were 5-geranyloxycoumarin (1), isobergapten (2), pimpinellin (3), β-sitosterol (4) and dammara- 20,23-dien-3β,25-diol. The acetylcholinesterase inhibitory activity of the isolated compound was evaluated by experimental and molecular docking methods. Compound 3 showed the best acetylcholinesterase inhibitory with an IC50 value of 0.208 μM and docking score of -7.5 kcal/mol.
Abbas-Mohammadi, M., Moridi Farimani, M., Salehi, P., Ebrahimi, S.N., Sonboli, A., Kelso, C., Skropeta, D., 2020. Molecular networking based dereplication of AChE inhibitory compounds from the medicinal plant Vincetoxicum funebre (Boiss. & Kotschy). J. Biomol. Struct. Dyna. 1-10.
Ashrafi, H., Azadi, A., Mohammadi-Samani, S., Hamidi, M., 2020. New candidate delivery system for Alzheimer's disease: deferoxamine nanogels. Biointerface Res. Appl. Chem. 10(6), 7106-7119.
Bansal, Y., Sethi, P., Bansal, G., 2013. Coumarin: a potential nucleus for anti-inflammatory molecules. Med. Chem. Res. 22(7), 3049-3060.
Brenner, G., 2000. Brenner and Stevens’ Pharmacology E-Book. Philadelphia, PA.
Choudhary, M.I., 2001. Bioactive natural products as a potential source of new pharmacophores. A theory of memory. Pure Appl. Chem. 73(3), 555-560.
Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7(2), 88-90.
Haghighatseir, N., Ashrafi, H., Rafiei, P., Azadi, A., 2020. Dexamethasone ameliorates Alzheimer's pathological condition via inhibiting Nf-kappa B and mTOR signaling pathways. Biointerface Res. Appl. Chem. 10(4), 5792-5796.
Hussain, M., Mazumder, T., 2021. A comprehensive review of pharmacological and toxicological properties of Cheilocostus speciosus (J. Koenig) CD Specht. Trends Phytochem. Res. 5(1), 1-12.
Iranshahi, M., Askari, M., Sahebkar, A., Hadjipavlou, L.D., 2009. Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. DARU J. Pharm. Sci. 99-103.
Iranshahi, M., Jabbari, A., Orafaie, A., Mehri, R., Zeraatkar, S., Ahmadi, T., Alimardani, M., Sadeghian, H., 2012. Synthesis and SAR studies of mono O-prenylated coumarins as potent 15-lipoxygenase inhibitors. Eur. J. Med. Chem. 57, 134-142.
Iyer, D., Patil, U., 2014. Evaluation of antihyperlipidemic and antitumor activities of isolated coumarins from Salvadora indica. Pharma. Biol. 52(1), 78-85.
Launer, L., Fratiglioni, L., Andersen, K., Breteler, M., Copeland, R., Dartigues, J., Lobo, A., Martinez-Lage, J., Soininen, H., Hofman, A., 1999. Regional differences in the incidence of Dementia in Europe-EURODEM collaborative analysis.
Melzer, D., 1998. New drug treatment for Alzheimer's disease: lessons for healthcare policy. BMJ 316 (7133), 762-764.
Mohammadhosseini, M., Venditti, A., Frezza, C., Serafini, M., Bianco, A., Mahdavi, B., 2021. The genus Haplophyllum Juss.: Phytochemistry and bioactivities—A review. Molecules 26(15), 4664.
Mouthe Kemayou, G.P., Fotsing Kache, S., Dzouemo, L.C., M Happi, G., Fogue Kouam, S., Tchouankeu, J.C., 2021. Phytochemistry, traditional uses, and pharmacology of the genus Ekebergia (Meliaceae): A review. Trends Phytochem. Res. 5(3), 110-125.
Mukherjee, P.K., Kumar, V., Mal, M., Houghton, P.J., 2007. Acetylcholinesterase inhibitors from plants. Phytomedicine 14(4), 289-300.
Nahar, L., El-Seedi, H.R., Khalifa, S.A., Mohammadhosseini, M., Sarker, S.D., 2021. Ruta essential oils: composition and bioactivities. Molecules 26(16), 4766.
Oh, M., Houghton, P., Whang, W., Cho, J., 2004. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine 11(6), 544-548.
Ozek, G., Yur, S., Goger, F., Ozek, T., Andjelkovic, B., Godjevac, D., Sofrenic, I., Aneva, I., Todorova, M., Trendafilova, A., 2019. Furanocoumarin Content, Antioxidant Activity, and Inhibitory Potential of Heracleum verticillatum, Heracleum sibiricum, Heracleum angustisectum, and Heracleum ternatum Extracts against Enzymes Involved in Alzheimer's Disease and Type II Diabetes. Chem. Biodivers. 16(4), e1800672.
Razavi, B.M., Arasteh, E., Imenshahidi, M., Iranshahi, M., 2015. Antihypertensive effect of auraptene, a monoterpene coumarin from the genus Citrus, upon chronic administration. Iran J. Basic Med. Sci. 18(2), 153.
Rechinger KH. (1982) Flora Iranica, Apiaceae, No. 162, Akademische Druck- u.Verlagsanstal Graz-Austria, 502-506.
Révész, L., Hiestand, P., La Vecchia, L., Naef, R., Naegeli, H.U., Oberer, L., Roth, H.J., 1999. Isolation and synthesis of a novel immunosuppressive 17α-substituted dammarane from the flour of the Palmyrah palm (Borassus flabellifer). Bioorganic Med. Chem. Lett. 9(11), 1521-1526.
Schulz, V., 2003. Ginkgo extract or cholinesterase inhibitors in patients with dementia: what clinical trials and guidelines fail to consider. Phytomedicine 10, 74-79.
Shahriari, M., Nourmandipour, F., Norouzi, S., Nejad Ebrahimi, S., 2021. Investigation of inhibitory properties of triphenyl-LasR enzyme involved in the quorum sensing of Pseudomonas aeruginosa by molecular modeling. Trends Phytochem. Res. 5(3), 126-135.
Sonboli, A., Azizian, D., Yousefzadi, M., Kanani, M., Mehrabian, A., 2007. Volatile constituents and antimicrobial activity of the essential oil of Tetrataenium lasiopetalum (Apiaceae) from Iran. Flav. Fragr. J. 22(2), 119-122.
Venkata Sairam, K., M Gurupadayya, B., S Chandan, R., K Nagesha, D., Vishwanathan, B., 2016. A review on chemical profile of coumarins and their therapeutic role in the treatment of cancer. Curr. Drug Deliv. 13(2), 186-201.
Wu, Y., Xu, J., Liu, Y., Zeng, Y., Wu, G., 2020. A review on anti-tumor mechanisms of coumarins. Front. Oncol. 10, 2720.
Xue, H., Lu, X., Zheng, P., Liu, L., Han, C., Hu, J., Liu, Z., Ma, T., Li, Y., Wang, L., 2010. Highly suppressing wild-type HIV-1 and Y181C mutant HIV-1 strains by 10-chloromethyl-11-demethyl-12-oxo-calanolide A with druggable profile. J. Med. Chem. 53(3), 1397-1401.
Zhu, J.J., Jiang, J.G., 2018. Pharmacological and nutritional effects of natural coumarins and their structure–activity relationships. Mol. Nutr. Food Res. 62(14), 1701073.