The Study of Electroencephalography in Neuromarketing Research, Consumer Behavior and Performance Method: A Systematic Analysis
Subject Areas : MarketingSamira Nazari Ghazvini 1 , Younos Vakil Alroaia 2 , Rohizat Baharon 3
1 - PhD Student in Business Management, Semnan Branch, Islamic Azad University, Semnan, Iran
2 - Associate Prof. and Chairman, Entrepreneurship and Commercialization Research Center, Semnan Branch, Islamic Azad University, Semnan, Iran
3 - Professor in Marketing Management, Department of Business Administration, Universiti Teknologi Malaysia, Johor, Malaysia
Keywords: " Systematic literature review", " Bibliometric Analysis", " Electroencephalography", "Neuromarketing",
Abstract :
Neuromarketing and its tools are an emerging and evolving field that bridges the gap between consumer behavior studies and neuroscience. These new technologies are used in the field of neuromarketing and neuroscience to observe the brain areas involved, for example, in seeing, hearing, or smelling the product. For example, functional magnetic resonance imaging (FMRI), electroencephalography (EEG), and event-related potentials (ERP) are used to identify the active points in the consumer's brain when they see, smell, or hear the product or service being tested. How these different techniques and tools work in neuromarketing has always been somewhat confusing to marketers. This study aims to examine the research articles published on the ScienceDirect website by identifying the current state of neuromarketing tools and electroencephalography (EEG) in neuromarketing to identify research gaps and provide recommendations for the application of this technique for experimental research for marketers. Using a two-stage bibliographic methodology, we show that although "neuromarketing" is the focus of research on the ScienceDirect website, there are not many empirical studies examining electroencephalography (EEG) and the combined use of this technology in consumer behavior. However, the use of this tool to screen messages and promotional materials has received the most attention. This study highlights the limitations of a systematic investigation of EEG issues in neuromarketing by examining FMRI, EEG, and ERP technologies. It also focuses on consumer behavior, particularly online shopping decision making, website design, and consumers' physiological responses to the brand. In addition, future studies are expected to be completed by combining EEG and neuromarketing technologies.
Abesh Loui Aghdam, S., soltanpanah, H., Mahdieh, O., Shakeri, R., & Habibi, F. (2023). Presenting a Systemic Model for the Effectiveness of Marketing Communication Activities in Social Networks. Journal of System Management, 9(2), 153-167. https://doi.org/https://doi.org/10.30495/jsm.2023.1972982.1715
Ahlert, D., Kenning, P., and Plassmann, H. (2006). “A window to the consumer’s mind: application of functional brain imaging techniques to advertising research,” in International Advertising and Communication, eds S.
Alvino, L. (2019). “How can we improve consumer behavior research? A critical literature review on the contributions and the limitations of consumer neuroscience,” in Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management Through Vision 2020 (Madrid), 5947–5951. https://b2n.ir/u50884
Alvino L, Pavone L, Abhishta A and Robben H (2020) Picking Your Brains: Where and How Neuroscience Tools Can Enhance Marketing Research.Front. Neurosci. 14:577666.
Avinash, T., Dikshant, L., & Seema, S. (2018). Methods of Neuromarketing and Implication of the Frontal Theta Asymmetry induced due to musical stimulus as choice modeling. Procedia Computer Science, 132, 55-67.
Artêncio, M. M., Giraldi, J. d. M. E., & de Oliveira, J. H. C. (2022). A cup of black coffee with GI, please! Evidence of geographical indication influence on a coffee tasting experiment. Physiology & Behavior, 245, 113671.
https://doi.org/https://doi.org/10.1016/j.physbeh.2021.113671
Bastiaansen, M., Straatman, S., Driessen, E., Mitas, O., Stekelenburg, J., & Wang, L. (2018). My destination in your brain: A novel neuromarketing approach for evaluating the effectiveness of destination marketing. Journal of Destination Marketing & Management, 7, 76-88. https://doi.org/https://doi.org/10.1016/j.jdmm.2016.09.003
Banich, M. T., and Compton, R. J. (2011). Cognitive Neuroscience. 3rd ed.Wadsworth Cengage Learning. https://b2n.ir/t15994
Bell L, Vogt J, Willemse C, Routledge T, Butler LT and Sakaki M (2018) Beyond Self-Report: A Review of Physiological and Neuroscientific Methods to Investigate Consumer Behavior. Front. Psychol. 9:1655.
Bhatia, Keshav. (2014). Neuromarketing: Towards a better understanding of consumer behavior. Optimization. Volume 6, Number 1. 52-62. ISSN no. 0974-0988
Bergstrom J. R., Schall A. J., (2017) Eye Tracking in User Experience Design.
Bettiga, Debora, Lucio Lamberti, and Giuliano Noci (2017), “Do mind and body agree? Unconscious versus conscious arousal in product attitude formation, Journal of Business Research, 75, 108-117.
Bercea, M. D. (2013). Quantitative versus qualitative in neuromarketing research Monica. Can. J. Region. Sci. 12, 39–60.
Berčík, J., Horská, E., Wang, R. W. Y., & Chen, Y.-C. (2016). The impact of parameters of store illumination on food shopper response. Appetite, 106, 101-109.
Benda-Prokeinová, R., & Hanová, M. (2016). Consumer's Behavior of the Foodstuff Consumption in Slovakia. Procedia - Social and Behavioral Sciences, 220, 21-29.
https://doi.org/https://doi.org/10.1016/j.sbspro.2016.05.465
Bigne, E., Simonetti, A., Ruiz, C., & Kakaria, S. (2021). How online advertising competes with user-generated content in TripAdvisor. A neuroscientific approach. Journal of Business Research, 123, 279-288.
https://doi.org/https://doi.org/10.1016/j.jbusres.2020.10.010
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4–5), 175–308.
Boz, H., Arslan, A., and Koc, E. (2017). Neuromarketing aspect of tourism pricing psychology. Tourism Manage. Perspect. 23, 119–128. https://doi.org/10.1016/j.tmp.2017.06.002
Boz, H., Arslan, A., & Koc, E. (2017). Neuromarketing aspect of tourısm pricing psychology. Tourism Management Perspectives, 23, 119-128.
BusinessDictionary.com. (2019). What is a consumer? definition and meaning. Retrieved from http://www.businessdictionary.com/definition/consumer.html Archived 2020-07-28 at the Wayback Machine.
Cabrera, F.E.; Sánchez-Núñez, P.; Vaccaro, G.; Peláez, J.I.; Escudero, J. Impact of Visual Design Elements andPrinciples in Human Electroencephalogram Brain Activity Assessed with Spectral Methods and Convolutional Neural Networks.Sensors 2021, 21, 4695.
Casado-Aranda, L.-A., Dimoka, A., & Sánchez-Fernández, J. (2019). Consumer Processing of Online Trust Signals: A Neuroimaging Study. Journal of Interactive Marketing, 47, 159-180. https://doi.org/https://doi.org/10.1016/j.intmar.2019.02.006
Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice.MIT Press. https://doi.org/10.7551/mitpress/9609.001.0001
Diehl and R. Terlutter (Germany: Deutscher Universitäts-Verlag), 163–178.
doi: 10.1007/3-8350-5702-2_9
Ebner, N. C., & Fischer, H. (2014). Emotion and aging: evidence from brain and behavior. Frontiers in Psychology, 5, 996.
https://doi.org/10.3389/fpsyg.2014.00996
Folwarczny, M., Pawar, S., Sigurdsson, V., & Fagerstrøm, A. (2019). Using neuro-IS/consumer neuroscience tools to study healthy food choices: a review. Procedia Computer Science, 164, 532-537.
https://doi.org/https://doi.org/10.1016/j.procs.2019.12.216
Georges, Patrick M (2014). Neuromarketing in Action: How to Talk and Sell to the Brain. London: Kogan Page Ltd. pp. 9–16. https://b2n.ir/g07698
Ghadimi, P., Wang, C., & Lim, M. (2019). Sustainable supply chain modeling and analytics; past debate, present problems, and future challenges. Resources, Conversation and Recycling, 140, 72–84.
Gill, R., & Singh, J. (2022). A study of neuromarketing techniques for proposing a cost-effective information-driven framework for decision making. Materials Today: Proceedings, 49, 2969-2981.
https://doi.org/https://doi.org/10.1016/j.matpr.2020.08.730
González-Morales, A., Mitrovic, J., & Garcia, R. C. (2020). Ecological consumer neuroscience for competitive advantage and business or organizational differentiation. European Research on Management and Business Economics, 26(3), 174-180.
https://doi.org/https://doi.org/10.1016/j.iedeen.2020.05.001
Giray, C., Yon, B., Alniacik, U., & Girisken, Y. (2022). How does mothers’ mood matter in their choice of organic food? Controlled eye-tracking study. Journal of Business Research, 144, 1175-1185.
https://doi.org/https://doi.org/10.1016/j.jbusres.2022.02.059
Global Harmonization Task Force (2012). Principles of Medical Devices Classification.
Gupta, R., ur Rehman Laghari, K., & Falk, T. H. (2016). Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization. Neurocomputing, 174, 875-884.
https://doi.org/https://doi.org/10.1016/j.neucom.2015.09.085
Goto, N., Mushtaq, F., Shee, D., Lim, X. L., Mortazavi, M., Watanabe, M., & Schaefer, A. (2017). Neural signals of selective attention are modulated by subjective preferences and buying decisions in a virtual shopping task. Biological Psychology, 128, 11-20. https://doi.org/https://doi.org/10.1016/j.biopsycho.2017.06.004
Gorin, A., Nedelko, A., Kosonogov, V., Vakhviyainen, M., Tugin, S., Moiseeva, V., Klucharev, V., & Shestakova, A. (2022). N400 correlates brand associations. Journal of Economic Psychology, 90, 102506.
https://doi.org/https://doi.org/10.1016/j.joep.2022.102506
González-Morales, A. (2020). Right evaluation of marketing stimuli with neuroscience. An electroencephalography experiment. Computers in Human Behavior Reports, 2, 100030.
https://doi.org/https://doi.org/10.1016/j.chbr.2020.100030
Gómez-Carmona, D., Marín-Dueñas, P. P., Tenorio, R. C., Domínguez, C. S., Muñoz-Leiva, F., & Liébana-Cabanillas, F. J. (2022). Environmental concern as a moderator of information processing: A fMRI study. Journal of Cleaner Production, 369, 133306.
https://doi.org/https://doi.org/10.1016/j.jclepro.2022.133306
García-Madariaga, J., Blasco López, M.-F., Burgos, I. M., & Virto, N. R. (2019). Do isolated packaging variables influence consumers' attention and preferences? Physiology & Behavior, 200, 96-103.
https://doi.org/https://doi.org/10.1016/j.physbeh.2018.04.030
Golnar-Nik, P., Farashi, S., & Safari, M.-S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. Physiology & Behavior, 207, 90-98.
https://doi.org/https://doi.org/10.1016/j.physbeh.2019.04.025
Gountas, J., Gountas, S., Ciorciari, J., & Sharma, P. (2019). Looking beyond traditional measures of advertising impact: Using neuroscientific methods to evaluate social marketing messages. Journal of Business Research, 105, 121-135.
https://doi.org/https://doi.org/10.1016/j.jbusres.2019.07.011
Gordon, Ross and Joseph Ciorciari (2017), “Social Marketing Research and Cognitive Neuroscience,” in K. Kubacki and S. Rundle-Thiele (Eds.), Formative Research in Social Marketing: Innovative Methods to Gain Consumer Insights. (pp. 145-63), Springer DOI:10.1016/j.jbusres.2019.07.011
Gordon R., Ciorciari, J., van Laer, T (2018), “Using EEG to Examine the Role of Attention, Working Memory, Emotion, and Imagination in Narrative Transportation”, European Journal of Marketing, 52 (1/2), 92-117.
Hakim, A., Klorfeld, S., Sela, T., Friedman, D., Shabat-Simon, M., & Levy, D. J. (2021). Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning. International Journal of Research in Marketing, 38(3), 770-791.
https://doi.org/https://doi.org/10.1016/j.ijresmar.2020.10.005
Harris J, Ciorciari J, Gountas J (2018a), “Consumer Neuroscience for Marketing Researchers,” Journal of Consumer Behaviour, 17 (3), 239-252.
Harris J, Ciorciari J, Gountas J (2018b), “Public Health Social Media Communications and Consumer Neuroscience”, Cogent Psychology, 5 (1), 1434058.
Hamelin, N., El Moujahid, O., and Thaichon, P. (2017). Emotion and advertising effectiveness: a novel facial expression analysis approach. J. Retail. Cons. Serv.36, 103–111.
Hsu, M., and Yoon, C. (2015). The neuroscience of consumer choice. Curr. Opin. Behav. Sci. 5, 116–121. https://doi.org/10.1016/j.cobeha.2015.09.005
Hsu, L., & Chen, Y.-J. (2020). Neuromarketing, subliminal advertising, and hotel selection: An EEG study. Australasian Marketing Journal (AMJ), 28(4), 200-208.
https://doi.org/https://doi.org/10.1016/j.ausmj.2020.04.009
Jai, T.-M., Fang, D., Bao, F. S., James, R. N., Chen, T., & Cai, W. (2021). Seeing It Is Like Touching It: Unraveling the Effective Product Presentations on Online Apparel Purchase Decisions and Brain Activity (An fMRI Study). Journal of Interactive Marketing, 53, 66-79. https://doi.org/https://doi.org/10.1016/j.intmar.2020.04.005
Jing, K., Qi, M., Mei, Y., & Chen, L. (2022). The impact of empathy with nature on green purchase behavior: An ERP study. Neuroscience Letters, 784, 136745.
https://doi.org/https://doi.org/10.1016/j.neulet.2022.136745
Kalaganis FP, Georgiadis K, Oikonomou VP, Laskaris NA, Nikolopoulos S and Kompatsiaris I (2021) Unlocking the Subconscious Consumer Bias: A Survey on the Past, Present, and Future of Hybrid EEG Schemes in Neuromarketing.Front. Neurosurgeon. 2:672982. doi 10.3389/fnrgo.2021.672982
Kardes, F., Cronley, M. and Cline, T., Consumer Behavior, Mason, OH, South-Western Cengage, 2011 p.7
Kardes, F., Cronley, M. and Cline, T., Consumer Behavior, Mason, OH, South-Western Cengage, 2011 p.9.
Khan, A., & Rasool, S. (2022). Game-induced emotion analysis using electroencephalography. Computers in Biology and Medicine, 145, 105441.
https://doi.org/https://doi.org/10.1016/j.compbiomed.2022.105441
Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. (2013). Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems with Applications, 40(9), 3803-3812.
Koc, E., & Boz, H. (2014). Psychoneurobiochemistry of tourism marketing. Tourism Management, 44, 140-148.
https://doi.org/https://doi.org/10.1016/j.tourman.2014.03.002
Kohanzahedani, B., Hassanpour Qorughchi, E., & Mirabi, V. R. (2019). Providing a Comprehensive Branding Pattern for Organic Product with a Sensory Marketing Approach. Journal of System Management, 5(4), 125-136.
Kumar, S., Yadava, M., & Roy, P. P. (2019). Fusion of EEG response and sentiment analysis of products review to predict customer satisfaction. Information Fusion, 52, 41-52. https://doi.org/https://doi.org/10.1016/j.inffus.2018.11.001
Klaib, A.F.; Alsrehin, N.O.; Melhem, W.Y.; Bashtawi, H.O.; Magableh, A.A. Eye tracking algorithms, techniques, tools, and applications with an emphasis on machine learning and Internet of Things technologies. Expert Syst. Appl. 2021, 166, 114037.
DOI:10.1016/J.ESWA.2020.114037
Lu, Y., Papagiannidis, S., & Amananos, E. (2018). Internet of Things: A systematic review of the business literature from the user and organizational perspectives. Technological Forecasting & Social Change, 136, 285–297.
DOI: 10.1016/j.techfore.2018.01.022
Lim, W. M. (2018). Demystifying neuromarketing. Journal of Business Research, 91, 205-220.
https://doi.org/https://doi.org/10.1016/j.jbusres.2018.05.036
Lim, Weng M. (2018), “Demystifying neuromarketing”, Journal of Business Research, 91 (1), 205-220.
Lee, Nick, Amanda J. Broderick, and Laura Chamberlain (2007), “What is ‘Neuromarketing’? A discussion and agenda for future research?” International Journal of Psychophysiology, 63 (2), 199-204.
Lee, E.-J. (2016). Empathy can increase customer equity related to pro-social brands. Journal of Business Research, 69(9), 3748-3754. https://doi.org/https://doi.org/10.1016/j.jbusres.2015.05.018
Lee, N., Broderick, A. J., & Chamberlain, L. (2007). What is ‘neuromarketing’? A discussion and agenda for future research. International Journal of Psychophysiology, 63, 199–204. https://doi.org/10.1016/j.ijpsycho.2006.03.007
Levallois, C., Clithero, J., Wouters, P., Smidts, A., and Huettel, S. (2012). Translating upwards: linking the neural and social sciences via neuroeconomics. Nat. Rev. Neurosci. 13, 789–797. https://doi.org/10.1038/nrn3354
Lajante, M., & Ladhari, R. (2019). The promise and perils of the peripheral psychophysiology of emotion in retailing and consumer services. Journal of Retailing and Consumer Services, 50, 305-313.
https://doi.org/https://doi.org/10.1016/j.jretconser.2018.07.005
Lee, N., Brandes, L., Chamberlain, L., and Senior, C. (2017). This is your brain on neuromarketing: reflections on a decade of research. J. Market. Manage. 33, 878–892. https://doi.org/10.1080/0267257X.2017.1327249
Liu, J., Mo, Z., & Gao, H. (2021). The effect of reviewer’s review volumes on online consumer reviews’ perceived usefulness: An event-related potential study. Neuroscience Letters, 762, 136139.
Mashrur, F. R., Rahman, K. M., Miya, M. T. I., Vaidyanathan, R., Anwar, S. F., Sarker, F., & Mamun, K. A. (2022). An intelligent neuromarketing system for predicting consumers’ future choices from electroencephalography signals. Physiology & Behavior, 253, 113847. https://doi.org/https://doi.org/10.1016/j.physbeh.2022.113847
Ma, Q., Wang, M., & Da, Q. (2021). The effects of brand familiarity and product category in brand extension: An ERP study. Neuroscience Research, 169, 48-56. https://doi.org/https://doi.org/10.1016/j.neures.2020.06.010
Madan, C. R. (2010). Neuromarketing: the next step in market research. Eureka, 1(1), 34–42. https://doi.org/10.29173/eureka7786
Marikyan, D., Papagiannidis, S., & Amananos, E. (2019). A systematic review of the smart home literature: A user perspective. Technological Forecasting and Social Change, 138, 139–154.
DOI: 10.1016/j.techfore.2018.08.015
Mashrur, F. R., Rahman, K. M., Miya, M. T. I., Vaidyanathan, R., Anwar, S. F., Sarker, F., & Mamun, K. A. (2022). An intelligent neuromarketing system for predicting consumers’ future choices from electroencephalography signals. Physiology & Behavior, 253, 113847. https://doi.org/https://doi.org/10.1016/j.physbeh.2022.113847
Mateusz, P., & Kesra, N. (2020). Cognitive neuroscience in the design process of social advertising. Procedia Computer Science, 176, 2959-2968. https://doi.org/https://doi.org/10.1016/j.procs.2020.09.207
Meyerding, S. G. H., & Mehlhose, C. M. (2020). Can neuromarketing add value to traditional marketing research? An exemplary experiment with functional near-infrared spectroscopy (fNIRS). Journal of Business Research, 107, 172-185. https://doi.org/https://doi.org/10.1016/j.jbusres.2018.10.052
Montazeribarforoushi, S., Keshavarzsaleh, A., and Ramsøy, T. Z. (2017). On the hierarchy of choice: an applied neuroscience perspective on the AIDA model. Cogent Psychol. 4, 1–23. https://doi.org/10.1080/23311908.2017.1363343
Murtazina, M. S., & Avdeenko, T. V. (2021). The constructing of cognitive functions ontology. Procedia Computer Science, 186, 595-602. https://doi.org/https://doi.org/10.1016/j.procs.2021.04.181
Mulrow, C. D. (1994). Systematic review-rationale for systemic reviews. British Medical Journal. 309, 597–599
DOI: 10.1136/bmj.309.6954.597
Niedziela, M. M., & Ambroze, K. (2021). The future of consumer neuroscience in food research. Food Quality and Preference, 92, 104124. https://doi.org/https://doi.org/10.1016/j.foodqual.2020.104124
Niedermeyer E.; da Silva F.L. (2004). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins. ISBN 978-0-7817-5126-1
Nomura, T., & Mitsukura, Y. (2015). EEG-Based Detection of TV Commercials Effects. Procedia Computer Science, 60, 131-140. https://doi.org/https://doi.org/10.1016/j.procs.2015.08.112
Pereira, T., & Oliveira, A. (2021). The usefulness of the averaging rule in consumer studies: A partial replication with an eye at neuroeconomics. European Review of Applied Psychology, 71(5), 100718. https://doi.org/https://doi.org/10.1016/j.erap.2021.100718
Plassmann, H., and Karmarkar, U. R. (2015). “Consumer neuroscience: revealing meaningful relationships between brain and consumer behavior,” in The Cambridge Handbook of Consumer Psychology, eds M. I. Norton, D. D. Rucker, and C. Lamberton (Cambridge: Cambridge University Press), 152–179. https://doi.org/10.1017/CBO9781107706552.006
Ramos, M. M. (2004). Change on the logistics management style through performance indicators; a case study. International Journal of Logistics Research and Applications. 7(4), 313–324.
Russo, V., Ciceri, A., Chiappa, M., Giulini, F., Marzari, L., Mauri, M., et al. (2015). Neuromarketing, comunicazione e comportamenti di consumo. Principi, strumenti. Milan: Franco Angeli.
https://b2n.ir/m94708
Ramsøy, T. Z. (2015). An Introduction to Consumer Neuroscience & Neuromarketing. Neurons Inc. https://b2n.ir/b28179
Sanei, S., and Chambers, J. A. (2007). EEG Signal Processing. Chichester: Wiley.
https://b2n.ir/k19537
Sargent, A., Watson, J., Ye, H., Suri, R., and Ayaz, H. (2020). Neuroergonomic assessment of hot beverage preparation and consumption: an EEG and EDA study. Front. Hum. Neurosci. 14:175. https://doi.org/https://doi.org/10.3389/fnhum.2020.00175
Sassatelli, R., Consumer Culture: History, Theory, and Politics, Sage, 2007, p. 10
DOI: https://doi.org/10.4135/9781446212684
Sebastian, V. (2014). Neuromarketing and Neuroethics. Procedia - Social and Behavioral Sciences, 127, 763-768. https://doi.org/https://doi.org/10.1016/j.sbspro.2014.03.351
Słupińska, K., Duda, J., & Biercewicz, K. (2021). Planning an experiment in a virtual environment reality as a place of research on human behavior using methods of neuroscience measurement – bibliometric analysis and methodological approach. Procedia Computer Science, 192, 3123-3133. https://doi.org/https://doi.org/10.1016/j.procs.2021.09.085
Songsamoe, S., Saengwong-ngam, R., Koomhin, P., and Matan, N. (2019). Understanding consumer physiological and emotional responses to food products using electroencephalography (EEG). Trends Food Sci. Technol. 93, 167–173.
Tarannum Zaki, Muhammad Nazrul Islam,(2021) Neurological and physiological measures to evaluate the usability and user experience (UX) of information systems: A systematic literature review, computer Science Review, Volume 40.
https://doi.org/10.1016/j.cosrev.2021.100375
Telpaz, Ariel, Ryan Webb, and Dino J. Levy (2015), “Using EEG to Predict Consumers’ Future Choices,” Journal of Marketing Research, 52 (4), 511-29.
Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge using systematic review. British Journal of Management, 14, 207–222.
https://doi.org/10.1111/1467-8551.00375
Uhm, J.-P., Lee, H.-W., & Han, J.-W. (2020). Creating a sense of presence in a virtual reality experience: Impact on neurophysiological arousal and attitude towards a winter sport. Sport Management Review, 23(4), 588-600. https://doi.org/https://doi.org/10.1016/j.smr.2019.10.003
Venkatraman, Vinod, Angelika Dimoka, Paul A. Pavlou, Khoi Vo, William Hampton, Bryan Bollinger, Hal E. Hershfield, Masakazu Ishihara, and Russell S. Winer (2015), “Predicting Advertising Success Beyond Traditional Measures: New Insights from Neurophysiological Methods and Market Response Modeling,” Journal of Marketing Research, 52 (4), 436-52.
https://doi.org/10.1509/jmr.13.0593
Vecchiato, Giovanni, Patrizia Cherubino, Arianna Trettel, and Fabio Babiloni (2013), Neuroelectrical brain imaging tools for the study of the efficacy of TV advertising stimuli and their application to Neuromarketing. Heidelberg: Springer. ISBN : 978-3-642-38063-1
Vecchiato, G., Babiloni, F., Astolfi, L., Toppi, J., Cherubino, P., Dai, J., et al. (2011). “Enhance of theta EEG spectral activity related to the memorization of commercial advertisings in Chinese and Italian subjects,” in Proceedings–2011 4th International Conference on Biomedical Engineering and Informatics, BMEI 2011 (Shanghai), 1491–1494. https://doi.org/10.1109/BMEI.2011.6098615
Vlăsceanu, Sebastian (2014). "New directions in understanding the decision-making process: neuroeconomics and neuromarketing". 17: 758–762.
DOI:10.1016/j.sbspro.2014.03.350
Verhulst, N., Vermeir, I., Slabbinck, H., Larivière, B., Mauri, M., & Russo, V. (2020). A neurophysiological exploration of the dynamic nature of emotions during the customer experience. Journal of Retailing and Consumer Services, 57, 102217. https://doi.org/https://doi.org/10.1016/j.jretconser.2020.102217
Wajid, A., Raziq, M. M., Ahmed, Q. M., & Ahmad, M. (2021). Observing viewers’ self-reported and neurophysiological responses to message appeal in social media advertisements. Journal of Retailing and Consumer Services, 59, 102373. https://doi.org/https://doi.org/10.1016/j.jretconser.2020.102373
Watanuki, S., & Akama, H. (2022). Neural substrates of brand equity: applying a quantitative meta-analytical method for neuroimage studies. Heliyon, 8(6), e09702. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e09702
Wang, ., Zhao, L., Vilela, A., & Lim, M. (2019). The evolution of Industrial Management & Data Systems over the past 25 years. A bibliometric overview. Industrial Management & Data Systems, 119(1), 2–34.
Wajid, A., Raziq, M. M., Ahmed, Q. M., & Ahmad, M. (2021). Observing viewers’ self-reported and neurophysiological responses to message appeal in social media advertisements. Journal of Retailing and Consumer Services, 59, 102373. https://doi.org/https://doi.org/10.1016/j.jretconser.2020.102373
Wang, C.-C., & Hsu, M.-C. (2014). An exploratory study using inexpensive electroencephalography (EEG) to understand flow experience in computer-based instruction. Information & Management, 51(7), 912-923. https://doi.org/https://doi.org/10.1016/j.im.2014.05.010
Yadegari Taheri, T., Vakil Alroaia, Y., Faezi Razi, F., & Heydariyeh, S. (2021). Identification and Prioritization of Organizational Intelligence Criteria in Production Cooperatives of Iran. Journal of System Management, 7(4), 205-227.
Yılmaz, B., Korkmaz, S., Arslan, D. B., Güngör, E., & Asyalı, M. H. (2014). Like/dislike analysis using EEG: Determination of most discriminative channels and frequencies. Computer Methods and Programs in Biomedicine, 113(2), 705-713. https://doi.org/https://doi.org/10.1016/j.cmpb.2013.11.010
Yu, X., Liu, T., He, L., & Li, Y. (2022). Micro-foundations of strategic decision-making in family business organizations: A cognitive neuroscience perspective. Long Range Planning, 102198. https://doi.org/https://doi.org/10.1016/j.lrp.2022.102198
Yen, C., & Chiang, M.-C. (2021). Examining the effect of online advertisement cues on human responses using eye-tracking, EEG, and MRI. Behavioural Brain Research, 402, 113128. https://doi.org/https://doi.org/10.1016/j.bbr.2021.113128
Zupic, I., & Cater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472.https://doi.org/10.1177/1094428114562629
Zhao, R., & Zhong, S. (2015). Carbon labeling influences on consumers’ behavior: A system dynamics approach. Ecological Indicators, 51, 98-106. https://doi.org/10.1016/j.ecolind.2014.08.030
Zhao, M., & Wang, X. (2021). Perception value of product-service systems: Neural effects of service experience and customer knowledge. Journal of Retailing and Consumer Services, 62,102617.https://doi.org/10.1016/j.jretconser.2021.102617
Zhao, M. (2022). The impact of cognitive conflict on product-service system value cocreation: An event-related potential perspective. Journal of Cleaner Production, 331, 129987. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.129987
Zhang, J., & Lee, E.-J. (2022). “Two Rivers” brain map for social media marketing: Reward and information value drivers of SNS consumer engagement. Journal of Business Research, 149, 494-505. https://doi.org/https://doi.org/10.1016/j.jbusres.2022.04.022
Zhang, J., Yun, J. H., & Lee, E.-J. (2021). Brain buzz for Facebook? Neural indicators of SNS content engagement. Journal of Business Research, 130, 444-452. https://doi.org/https://doi.org/10.1016/j.jbusres.2020.01.029
Zubair, M., Wang, X., Iqbal, S., Awais, M., & Wang, R. (2020). Attentional and emotional brain response to message framing in the context of green marketing. Heliyon, 6(9), e04912. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e04912