Improvement of leaf area index and
leaf chlorophyll concentration (SPAD) soybean by Fe, Zn and Mn nano-chelates foliar application under limited irrigation conditions
Subject Areas :
botany
Mohammad Saeed Vaghar
1
1 - Assistant Professor, Department of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
Received: 2021-08-15
Accepted : 2021-09-06
Published : 2021-12-22
Keywords:
soybean,
limited irrigation,
micronutrients,
Drought stress,
Leaf chlorophyll concentration,
leaf area index,
Abstract :
Objectives: Maintaining the balance of nutrients leads to increase yield so the essential elements should be available enough in the process of plant nutrition. This experiment was performed by foliar application of iron, zinc, and manganese nano-clates under limited irrigation conditions to improving leaf area index and leaf chlorophyll concentration.Methods: The two years experiment was conducted (2016-2017). The main plot included four levels of irrigation: full irrigation, irrigation withhold at flowering stage, podding stage, and grain filling period. The subplot included eight levels of foliar application with Fe, Zn, Mn, Fe+Zn, Fe+Mn, Zn+Mn, Fe+Zn+Mn nano-chelates, and distilled water (control).Results: Drought stress reduced leaf area index significantly. The highest reduction was obtained from the interaction of control treatment and cessation of irrigation in the pod stage, which was 31.5% less than the full irrigation treatment. Foliar application of Zn+Mn was more successful in modulating drought stress and increased leaf area index by 49.4% compared to the control. Irrigation cessation in flowering stage increased chlorophyll concentration by 11.2% and decreased it by 16.5% in pod stage. With the application of Fe+Zn nano-chelate increased on leaf chlorophyll concentration in the pod stage and grain formation by 38.8% and 39.1% compared to the control and was recognized as the best treatment.Conclusion: In limited irrigation conditions, foliar feeding of Fe, Zn and Mn nano-chlates is a suitable solution and compatible with water crisis and can improve soybean yield by modifying drought stress and improving leaf area index and leaf chlorophyll concentration.
References:
(2018). World agricultural supply and demand estimates. World agricultural outlook board. 2002. Available at:
https://www.usda.gov/oce/commodity/wasde/Secretary-Briefing.pdf
Liu K. Chemistry and nutritional value of soybean components. 1997: 25-113. DOI: 10.1007/978-1-4615-1763-42
Souri MK & Bakhtiarizade M. Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Scientia Horticulture. 2019; 243: 472-476.
DOI: 1016/j. scienta.2018.08.056.
Souri MK & Hatamian M. Amino chelates in plant nutrition: a review. Plant Nutr. 2019; 42(1): 67-78. DOI: 10.1080/01904167.2018.1549671.
Dogan E, Kirnak H & Copur O. Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crops Res. 2007; 103(2): 154-159. DOI: 1016/j.fcr.2007.05.009
Reddy AR, Chaitanya KV & Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Plant Physiol. 2004; 161(11): 1189-1202. DOI: 10. 1016/j.jplph. 2004.01.013
Hatamian M, Rezaei Nejad A, Kafi M, Souri MK & Shahbazi K. Nitrate improves hackberry seedling growth under cadmium application. Biol. Technol. Agric. 2020; 6(1): 1-8. DOI: 10.1016/j.heliyon.2020.e03247.
Taiz L & Zeiger E. Plant Physiology. The Benjamin Cumming Publishing Company. 2003; 91(6): 750-751. DOI: 1093/aob/mcg079
Wijewardana C, Alsajri FA, Irby T, Krutz J & Golden B. Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns. Sci. 2018; 36(4): 241-255. DOI: 10.1007/s00271-018-0580-1
Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR & Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Agric. Food. Chem. 2011; 59(8): 3485-3498.
Rosati A & Dejong TM. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves. Ann Bot. 2003; 91(7): 869-877.
DOI: 1093/aob/mc g094
Wijewardana C, Reddy KR & Bellaloui N. Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem. 2018; 278(1): 92-100. DOI: 1016/j.food chem.2018.11.035
Singh NB, Amist N, Yadav K, Singh D, Pandey JK & Singh SC. Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Nanoeng. Nanomanuf. 2013; 3(4): 353-364. DOI: 10.1166/jnan.2013.1156
Montoya F, Garcia C, Pintos F & Otero A. Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions. Water Manage. 2017; 193(1): 30-45. DOI: 10.1016/j.agwat.2017.08.001
Ghosh PK, Ajay KK, Bandyopadhyay MC, Manna KG, Mandal AK & Hati KM. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. II. Dry matter yield, nodulation, chlorophyll content and enzyme activity. Technol. 2004; 95(1): 85-93. DOI: 10.1016/j.biortech. 2004.02.012
Rosales-Serna R, Kohashi-Shibata J, Acosta-Gallegos JA, Trejo-Lopez C, Ortiz-Cereceres J & Kelly JD. Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars. Field Crops Res. 2004; 85(2): 203-211.
DOI: 1016/s0378-4290(03) 00161-8
Semida WM, Abdelkhalik A, Mohamed GF, El-Mageed A, Taia A & Mageed AA. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena). J. Plants. 2021; 10(2): 1-17. DOI: 10.3390/plants10020 421
Kafi M & Rostami M. Yield characteristics and oil content of three safflower (Carthamus tinctorius) cultivars under drought in reproductive stage and irrigation with saline water. Iranian Journal of Field Crops Research. 2007; 5(1): 121-132. [In Persian].
Babaeian M, Tavassoli A, Ghanbari A, Esmaeilian Y & Fahimifard M. Effects of foliar micronutrient application on osmotic adjustments, grain yield and yield components in sunflower (Alster cultivar) under water stress at three stages. J. Agric. Res. 2011; 6(5): 1204-1208. DOI: 10.58 97/AJAR10.928
Zhang M, Duan L, Tian X, He Z, Li J, Wang B & Li Z. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. Plant Physiol. 2007; 164(6): 709-717.
DOI: 10.1016/j.jplph. 2006.04.008
Zahra Z, Arshad M, Rafique R, Mahmood A, Habib A, Qazi IA & Khan SA. Metallic Nanoparticle (TiO2 and Fe3O4) Application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. Agric. Food. Chem. 2015; 63(31): 6876-6882.
DOI: 10.1021/acs. jafc.5b01611
Lobato AKS, Oliveira Neto CF, Santos Filho BG, Costa RCL, Cruz FJR, Neves HKB & Lopes MJS. Physiological and biochemical behavior in soybean (Glycine max Sambaiba) plants under water deficit. Aust. J. Crop Sci. 2008; 2(1): 25-32.
Oliviera-Neto CF, Silva-Lobato AK, Goncalves-Vidigal MC, Costa RCL, Santos BG, Filho BG, Alves GAR, Silva-Maia WJM, Cruz FJR, Neres HKB & Santos Lopes MJ. Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. Technol. 2009; 7(3): 588-593.
Sultana N, Ikeda T & Kashem MA. Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. Exp. Bot. 2001; 46(2): 129-140. DOI: 10.1016/s0098-8472(01)00090-9
Servin AD & White JC. Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. Nano Impact. 2016; 1: 9-12.
DOI: 1016/j.impact.2015.1 2.002
Singh NA. Nanotechnology innovations, industrial applications and patents. Environ. Chem. Lett. 2017; 15(2): 185-91. DOI: 1007/s10311-017-0612-8
Adams ML, Norvell WA, Philpot WD & Peverly JH. Spectral detection of micronutrient deficiency in bragg soybean. J. 2000; 92(2): 261-268. DOI: 10.1007/s10087 0050031
Wiersma JV. High rates of Fe-EDDHA and seed iron concentration suggest partial solutions to iron deficiency in soybeans. J. 2005; 97(3): 924-934.
DOI: 10.2134/agronj 2004.0309
Khan HR, McDonald GK & Rengel Z. Zn fertilization improves water use efficiency, grain yield and seed Zn content in chickpea. Plant Soil. 2003; 249(2): 389-400.
Nikolic M & Pavlovic J. Plant responses to iron deficiency and toxicity and iron use efficiency in plants. Plant Micronutr. Use Effic. 2018; 55-69.
DOI: 1016/b978-0-12-812104-7.00004
Pandey N, Pathak GC & Sharma CP. Zinc is critically required for pollen function and fertilization in lentil. J. Trace Elem. 2006; 20(2): 89-96.
DOI: 1016/j.jtemb.2005. 09.006
Hossain MM, Liu X, Qi X, Lam HM & Zhang J. Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. J. 2014; 2(6): 366-380. DOI: 10.1016/j.cj.2014.08.001
Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic bio fortification?. Plant Soil. 2008; 302(1): 1-17. DOI: 1007/s11104-007-9466-3
Liu R & Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Total Environ. 2015; 514(1): 131-139.
DOI: 10.1016/j.scit oten v.2015.01.104
Bennett MJ, Rhetoric E, Hicks DR, Naeve SL & Bennett NB. The Minnesota soybean field book. St Paul MN, University of Minnesota Extension Service. 1999: p. 79.
Fouilleux G. Increase of Bradyrhizobium japonicum numbers in soils and enhanced nodulation of soybean (Glycine max (L.) merr.) using granular inoculants amended with nutrients. FEMS Microbiol Ecol. 1996; 20(3): 173-183.
DOI: 1016/0168-6496(96)00028-1
Karam F, Masaad R, Sfeir T, Mounzer O & Rouphael Y. Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agric. Water Manag. 2005. 75; 3: 226-244. DOI: 1016/j.agwat. 2004.12.015
Liu X, Jin J, Wang G & Herbert SJ. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crop Res. 2008; 105(3): 157-171.
DOI: 1016/j.fcr.2007. 09.003.
Mandal B, Hazra GC & Mandal LN. Soil management influence on zinc desorption for rice and maize nutrition. Soil Sci. Soc. Am. J. 2000; 64(5): 1699-1705.
DOI: 2136/sssaj2000.645 1699x
Sanchez-Raya AJ, Leal A, Gomez-Ortega M & Recalde L. Effect of iron on the absorption and translocation of manganese. Plant Soil. 1974; 41(3): 429-434.
DOI: 1007/bf02185806
Alloway Bj. Zinc in soil and crop nutrition: Areas of the world with Zinc deficiency problems [Online]. 2008. Available at: http://www.zinc-crops.org/crops/Al-loway-all.php. Accessed 16 August.
Aghdasi S, Modares Sanavy SAM, Aghaalikhani M, Keshavarz H. Effect of foliar application of Iron and Manganese on yield and yield components of Mungbean under water deficit stress. Water and Soil Science. 2019; 28(3): 13-25. [In Persian].
Ommen O, Donnelly A, Vanhoutvin S, Van Oijen M & Manderscheid R. Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the “ESPACE-wheat” project. J. Agron. 1999; 10(3): 197-203. DOI: 10.10 16/s161-0301(99)00011-8
Movahhedy-Dehnavy M, Modarres-Sanavy SAM & Mokhtassi-Bidgoli A. Foliar application of zinc and manganese improves seed yield and quality of safflower (Carthamus tinctorius ) grown under water deficit stress. Ind. Crops Prod. 2009; 30(1): 82-92. DOI: 10.1016/j.indcrop. 2009.02.004
Ravi S, Channal HT, Hebsur NS, Patil BN & Dharmatti PR. Effect of sulphur, zinc and iron nutrition on growth, yield, nutrient uptake and quality of safflower (Carthamus tinctorius). Karnataka J. Agric. Sci. 2008; 21(3): 382-385.
Souri MK & Yaghoubi Sooraki F. Benefits of organic fertilizers spray on growth quality of chili pepper seedlings under cool temperature. Plant Nutr. 2019; 42(6): 650-656. DOI: 10.1080/019 04167.2019.1568461.
Mihailovic N, Lazarevic M, Dzeletovic Z, Vuckovic M & Durđevic M. Chlorophyllase activity in wheat, Triticum aestivum leaves during drought and its dependence on the nitrogen ion form applied. Plant Sci. 1997; 129(2): 141-146.
DOI: 10.1016/s0168-9452(97)00189-1
Schutz M & Fangmeier A. Growth and yield responses of spring wheat (Triticum aestivum cv. Minaret) to elevated CO2 and water limitation. Environ. Pollut. 2001; 114(2): 187-194. DOI: 10.1016/s0269-7491(00) 00215-3
Heitholt JJ, Sloan JJ & MacKown CT. Copper, manganese, and zinc fertilization effects on growth of soybean on a calcareous soil. Plant Nutr. 2002; 25(8): 1727-1740.
DOI: 10.1081/ pln-120006054
Fatollahpour M, Rashidi V, Mirshekari B, Khalilvand Behrouzyar E & Farahvash F. Effects of nano-fertilizers on physiological and yield characteristics of pinto bean cultivars under water deficit stress. Plant Nutr. 2020; 43(19): 1-13.
DOI: 10.1080/01904167.2020.179 9000
Soleymani A, Firoozi M & Naraniani L. Effect of foliar application of micro nutrients on physiological growth indices and total dry matter yield of forage Ccorn. Iranian Journal of Field Crops Research. 2011; 9(3): 340-347. [In Persian].
_||_
(2018). World agricultural supply and demand estimates. World agricultural outlook board. 2002. Available at:
https://www.usda.gov/oce/commodity/wasde/Secretary-Briefing.pdf
Liu K. Chemistry and nutritional value of soybean components. 1997: 25-113. DOI: 10.1007/978-1-4615-1763-42
Souri MK & Bakhtiarizade M. Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Scientia Horticulture. 2019; 243: 472-476.
DOI: 1016/j. scienta.2018.08.056.
Souri MK & Hatamian M. Amino chelates in plant nutrition: a review. Plant Nutr. 2019; 42(1): 67-78. DOI: 10.1080/01904167.2018.1549671.
Dogan E, Kirnak H & Copur O. Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crops Res. 2007; 103(2): 154-159. DOI: 1016/j.fcr.2007.05.009
Reddy AR, Chaitanya KV & Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Plant Physiol. 2004; 161(11): 1189-1202. DOI: 10. 1016/j.jplph. 2004.01.013
Hatamian M, Rezaei Nejad A, Kafi M, Souri MK & Shahbazi K. Nitrate improves hackberry seedling growth under cadmium application. Biol. Technol. Agric. 2020; 6(1): 1-8. DOI: 10.1016/j.heliyon.2020.e03247.
Taiz L & Zeiger E. Plant Physiology. The Benjamin Cumming Publishing Company. 2003; 91(6): 750-751. DOI: 1093/aob/mcg079
Wijewardana C, Alsajri FA, Irby T, Krutz J & Golden B. Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns. Sci. 2018; 36(4): 241-255. DOI: 10.1007/s00271-018-0580-1
Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR & Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Agric. Food. Chem. 2011; 59(8): 3485-3498.
Rosati A & Dejong TM. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves. Ann Bot. 2003; 91(7): 869-877.
DOI: 1093/aob/mc g094
Wijewardana C, Reddy KR & Bellaloui N. Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem. 2018; 278(1): 92-100. DOI: 1016/j.food chem.2018.11.035
Singh NB, Amist N, Yadav K, Singh D, Pandey JK & Singh SC. Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Nanoeng. Nanomanuf. 2013; 3(4): 353-364. DOI: 10.1166/jnan.2013.1156
Montoya F, Garcia C, Pintos F & Otero A. Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions. Water Manage. 2017; 193(1): 30-45. DOI: 10.1016/j.agwat.2017.08.001
Ghosh PK, Ajay KK, Bandyopadhyay MC, Manna KG, Mandal AK & Hati KM. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. II. Dry matter yield, nodulation, chlorophyll content and enzyme activity. Technol. 2004; 95(1): 85-93. DOI: 10.1016/j.biortech. 2004.02.012
Rosales-Serna R, Kohashi-Shibata J, Acosta-Gallegos JA, Trejo-Lopez C, Ortiz-Cereceres J & Kelly JD. Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars. Field Crops Res. 2004; 85(2): 203-211.
DOI: 1016/s0378-4290(03) 00161-8
Semida WM, Abdelkhalik A, Mohamed GF, El-Mageed A, Taia A & Mageed AA. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena). J. Plants. 2021; 10(2): 1-17. DOI: 10.3390/plants10020 421
Kafi M & Rostami M. Yield characteristics and oil content of three safflower (Carthamus tinctorius) cultivars under drought in reproductive stage and irrigation with saline water. Iranian Journal of Field Crops Research. 2007; 5(1): 121-132. [In Persian].
Babaeian M, Tavassoli A, Ghanbari A, Esmaeilian Y & Fahimifard M. Effects of foliar micronutrient application on osmotic adjustments, grain yield and yield components in sunflower (Alster cultivar) under water stress at three stages. J. Agric. Res. 2011; 6(5): 1204-1208. DOI: 10.58 97/AJAR10.928
Zhang M, Duan L, Tian X, He Z, Li J, Wang B & Li Z. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. Plant Physiol. 2007; 164(6): 709-717.
DOI: 10.1016/j.jplph. 2006.04.008
Zahra Z, Arshad M, Rafique R, Mahmood A, Habib A, Qazi IA & Khan SA. Metallic Nanoparticle (TiO2 and Fe3O4) Application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. Agric. Food. Chem. 2015; 63(31): 6876-6882.
DOI: 10.1021/acs. jafc.5b01611
Lobato AKS, Oliveira Neto CF, Santos Filho BG, Costa RCL, Cruz FJR, Neves HKB & Lopes MJS. Physiological and biochemical behavior in soybean (Glycine max Sambaiba) plants under water deficit. Aust. J. Crop Sci. 2008; 2(1): 25-32.
Oliviera-Neto CF, Silva-Lobato AK, Goncalves-Vidigal MC, Costa RCL, Santos BG, Filho BG, Alves GAR, Silva-Maia WJM, Cruz FJR, Neres HKB & Santos Lopes MJ. Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. Technol. 2009; 7(3): 588-593.
Sultana N, Ikeda T & Kashem MA. Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. Exp. Bot. 2001; 46(2): 129-140. DOI: 10.1016/s0098-8472(01)00090-9
Servin AD & White JC. Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. Nano Impact. 2016; 1: 9-12.
DOI: 1016/j.impact.2015.1 2.002
Singh NA. Nanotechnology innovations, industrial applications and patents. Environ. Chem. Lett. 2017; 15(2): 185-91. DOI: 1007/s10311-017-0612-8
Adams ML, Norvell WA, Philpot WD & Peverly JH. Spectral detection of micronutrient deficiency in bragg soybean. J. 2000; 92(2): 261-268. DOI: 10.1007/s10087 0050031
Wiersma JV. High rates of Fe-EDDHA and seed iron concentration suggest partial solutions to iron deficiency in soybeans. J. 2005; 97(3): 924-934.
DOI: 10.2134/agronj 2004.0309
Khan HR, McDonald GK & Rengel Z. Zn fertilization improves water use efficiency, grain yield and seed Zn content in chickpea. Plant Soil. 2003; 249(2): 389-400.
Nikolic M & Pavlovic J. Plant responses to iron deficiency and toxicity and iron use efficiency in plants. Plant Micronutr. Use Effic. 2018; 55-69.
DOI: 1016/b978-0-12-812104-7.00004
Pandey N, Pathak GC & Sharma CP. Zinc is critically required for pollen function and fertilization in lentil. J. Trace Elem. 2006; 20(2): 89-96.
DOI: 1016/j.jtemb.2005. 09.006
Hossain MM, Liu X, Qi X, Lam HM & Zhang J. Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. J. 2014; 2(6): 366-380. DOI: 10.1016/j.cj.2014.08.001
Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic bio fortification?. Plant Soil. 2008; 302(1): 1-17. DOI: 1007/s11104-007-9466-3
Liu R & Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Total Environ. 2015; 514(1): 131-139.
DOI: 10.1016/j.scit oten v.2015.01.104
Bennett MJ, Rhetoric E, Hicks DR, Naeve SL & Bennett NB. The Minnesota soybean field book. St Paul MN, University of Minnesota Extension Service. 1999: p. 79.
Fouilleux G. Increase of Bradyrhizobium japonicum numbers in soils and enhanced nodulation of soybean (Glycine max (L.) merr.) using granular inoculants amended with nutrients. FEMS Microbiol Ecol. 1996; 20(3): 173-183.
DOI: 1016/0168-6496(96)00028-1
Karam F, Masaad R, Sfeir T, Mounzer O & Rouphael Y. Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agric. Water Manag. 2005. 75; 3: 226-244. DOI: 1016/j.agwat. 2004.12.015
Liu X, Jin J, Wang G & Herbert SJ. Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crop Res. 2008; 105(3): 157-171.
DOI: 1016/j.fcr.2007. 09.003.
Mandal B, Hazra GC & Mandal LN. Soil management influence on zinc desorption for rice and maize nutrition. Soil Sci. Soc. Am. J. 2000; 64(5): 1699-1705.
DOI: 2136/sssaj2000.645 1699x
Sanchez-Raya AJ, Leal A, Gomez-Ortega M & Recalde L. Effect of iron on the absorption and translocation of manganese. Plant Soil. 1974; 41(3): 429-434.
DOI: 1007/bf02185806
Alloway Bj. Zinc in soil and crop nutrition: Areas of the world with Zinc deficiency problems [Online]. 2008. Available at: http://www.zinc-crops.org/crops/Al-loway-all.php. Accessed 16 August.
Aghdasi S, Modares Sanavy SAM, Aghaalikhani M, Keshavarz H. Effect of foliar application of Iron and Manganese on yield and yield components of Mungbean under water deficit stress. Water and Soil Science. 2019; 28(3): 13-25. [In Persian].
Ommen O, Donnelly A, Vanhoutvin S, Van Oijen M & Manderscheid R. Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the “ESPACE-wheat” project. J. Agron. 1999; 10(3): 197-203. DOI: 10.10 16/s161-0301(99)00011-8
Movahhedy-Dehnavy M, Modarres-Sanavy SAM & Mokhtassi-Bidgoli A. Foliar application of zinc and manganese improves seed yield and quality of safflower (Carthamus tinctorius ) grown under water deficit stress. Ind. Crops Prod. 2009; 30(1): 82-92. DOI: 10.1016/j.indcrop. 2009.02.004
Ravi S, Channal HT, Hebsur NS, Patil BN & Dharmatti PR. Effect of sulphur, zinc and iron nutrition on growth, yield, nutrient uptake and quality of safflower (Carthamus tinctorius). Karnataka J. Agric. Sci. 2008; 21(3): 382-385.
Souri MK & Yaghoubi Sooraki F. Benefits of organic fertilizers spray on growth quality of chili pepper seedlings under cool temperature. Plant Nutr. 2019; 42(6): 650-656. DOI: 10.1080/019 04167.2019.1568461.
Mihailovic N, Lazarevic M, Dzeletovic Z, Vuckovic M & Durđevic M. Chlorophyllase activity in wheat, Triticum aestivum leaves during drought and its dependence on the nitrogen ion form applied. Plant Sci. 1997; 129(2): 141-146.
DOI: 10.1016/s0168-9452(97)00189-1
Schutz M & Fangmeier A. Growth and yield responses of spring wheat (Triticum aestivum cv. Minaret) to elevated CO2 and water limitation. Environ. Pollut. 2001; 114(2): 187-194. DOI: 10.1016/s0269-7491(00) 00215-3
Heitholt JJ, Sloan JJ & MacKown CT. Copper, manganese, and zinc fertilization effects on growth of soybean on a calcareous soil. Plant Nutr. 2002; 25(8): 1727-1740.
DOI: 10.1081/ pln-120006054
Fatollahpour M, Rashidi V, Mirshekari B, Khalilvand Behrouzyar E & Farahvash F. Effects of nano-fertilizers on physiological and yield characteristics of pinto bean cultivars under water deficit stress. Plant Nutr. 2020; 43(19): 1-13.
DOI: 10.1080/01904167.2020.179 9000
Soleymani A, Firoozi M & Naraniani L. Effect of foliar application of micro nutrients on physiological growth indices and total dry matter yield of forage Ccorn. Iranian Journal of Field Crops Research. 2011; 9(3): 340-347. [In Persian].