Evaluation of the Allelopathic Effects of Eucalyptus globulus Labill. Seed and Leaf Extracts on Germination and Growth of Wheat (Triticum aestivum L.) and Capsella bursa-pastoris
Subject Areas : biology
1 - Assistant Professor, Department of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Keywords: Allelopathy, Eucalyptus globulus , Germination, Chlorophyll, wheat, Capsella bursa-patoris,
Abstract :
Objective: Weeds are integral yet detrimental components of agricultural and non-agricultural ecosystems, threatening crop yield and quality. To achieve economically viable weed control with minimal chemical herbicide use, integrated management strategies combining environmentally compatible methods are essential.
Materials and Methods: A greenhouse experiment (randomized complete block design) and a laboratory study (completely randomized design) were conducted in 2023. Treatments included aqueous extracts of Eucalyptus globulus seeds and leaves at concentrations of 20%, 40%, 60%, 80%, and 100%, alongside a control (distilled water).
Findings: Both seed and leaf extracts significantly inhibited all studied traits in a concentration-dependent manner. Capsella bursa-pastoris exhibited greater sensitivity to allelopathic compounds than wheat. Seed extracts at 80% and 100% concentrations completely suppressed germination percentage, germination rate, shoot length, root length, shoot dry weight, and root dry weight in Capsella bursa-pastoris. Similar inhibition occurred with 100% leaf extract. The lowest total chlorophyll content in the weed was observed under 100% seed and leaf extracts, with an 86.3% reduction at 80% seed extract.
Conclusion: The dicotyledonous Capsella bursa-pastoris is more sensitive to Eucalyptus allelopathy than the monocotyledonous wheat. Aqueous Eucalyptus extracts, particularly from seeds, contain potent allelochemicals that could serve as eco-friendly bioherbicides. These findings support their integration into future weed management programs targeting Capsella bursa-pastoris.
1. Rassaeifar M, Hosseini N, Haji Hasani Asl N, Zandi P & Moradi Aghdam A. Allelopathic effect of Eucalyptus globulus essential oil on seed germination and seedling establishment of Amaranthus blitoides and Cynodon dactylon. Trakia Journal of Sciences. 2013; 1: 73-81.
2. Sardrood BP & Goltapeh EM. Weeds, herbicides and plant disease management. In: Sustainable Agriculture Reviews. 2018; 31: 41-178.
http://doi.org/10.1007/978-3-319-94232-2-3
3. Fried G, Chauvel B, Reynaud P & Sache I. Decreases in crop production by non-native weeds, pests, and pathogens. In: Impact of biological invasions on ecosystem services. 2017: 83-101. http://doi.org/10.1007/978-3-319-45121-3-6
4. Zand A, Rahimian mashhadi H, Koochaki A, Khalghani J, Moosavi K & Ramezani K. Ecology of Weeds (Management Applications) (Translation). Jahad Daneshgahi Press, Mashhad. 2004: 560. [in persian]
5. Balbus JM, Boxall AB, Fenske RA, McKone TE & Zeise L. Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment. Environ Toxicol Chem. 2013; 32(1): 62-78. http://doi.org/10.1002/etc.2046
6. Weldeslassie T, Naz H, Singh B & Oves M. Chemical contaminants for soil, air and aquatic ecosystem. In: Modern age environmental problems and their remediation. 2018: 1-22. http://doi.org/10.1007/978-3-319-64501-8-1
7. Jabran K & Chauhan BS. Weed management in aerobic rice systems. Crop Protection. 2015; 78: 151-163. http://doi.org/10.1016/j.cropro.2015.09.005
8. Buchi L, Wendling M, Amosse C, Jeangros B & Charles R. Cover crops to secure weed control strategies in a maize crop with reduced tillage. Field Crops Research. 2020; 247: 107583. http://doi.org/10.1016/j.fcr.2019.107583
9. Motmainna M, Juraimi AS, Uddin MK, Asib NB, Islam AKMM, Ahmad-Hamdani MS, Berahim Z & Hasan M. Physiological and biochemical responses of Ageratum conyzoides, Oryza sativa f. spontanea (weedy rice) and Cyperus iria to Parthenium hysterophorus methanol extract. Plants. 2021; 10: 1205. http://doi.org/10.3390/plants1006120
10. Medic A, Zamljen T, Slatnar A, Hudina M, Grohar MC & Veberic, R. Effect of Juglone and Other Allelochemicals in Walnut Leaves on Yield, Quality and Metabolites of Snack Cucumber (Cucumis sativus L.). Foods. 2023; 12: 371.
http://doi.org/10.3390/foods12020371
11. Lamine C. Transition pathways towards a robust ecologization of agriculture and the need for system redesign. Cases from organic farming and IPM. Journal of Rural Studies. 2011; 27(2): 209-219. http://doi.org/10.1016/j.jrurstud.2011.02.001
12. Geng Y, Cao G, Wang L & Wang S. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE. 2019; 14(7): e0219512.
http://doi.org/10.1371/journal.pone.0219512
13. Korres NE, Burgos NR, Travlos I, Vurro M, Gitsopoulos TK & Varanasi VK. New directions for integrated weed management: Modern technologies, tools and knowledge discovery. Advances in Agronomy. 2019; 155: 243-319.
http://doi.org/10.1016/bs.agron.2019.01.006.
14. Mubeen K, Nadeem MA, Tanveer A & Zahir ZA. Allelopathic effects of sorghum and sunflower water extractson germination and seedling growth of rice (Oryza sativa L.) and three weed species. Journal of Animal and Plant Sciences. 2012; 22(3): 738-746.
15. Cheng F & Cheng Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sciences. 2015; 6: 1020. http://doi.org/10.3389/fpls.2015.01020
16. Macias FA, Oliveros-Bastidas A, Marin D, Chinchilla N, Castellano D & Molinillo JM. Evidence for an allelopathic interaction between rye and wild oats. Journal of Agricultural and Food Chemistry. 2014; 62(39): 9450-9457. http://doi.org/10.1021/jf503840d
17. Jabran K. Manipulation of allelopathic crops for weed control. Springer, Cham, 2017:
65-75.
18. Aci MM, Sidari R, Araniti F & Lupini A. Emerging trends in allelopathy: A genetic perspective for sustainable agriculture. Agronomy. 2022; 12(9): 2043.
http://doi.org/10.3390/agronomy12092043
19. Das CR, Mondal NK, Aditya P, Datta K, Banerjee A & Das K. Allelopathic potentialities of leachates of leaf litter of some selected tree species on gram seeds under laboratory conditions. Asian Journal of Experimental Biological Science. 2012; 3(1): 59-65.
20. Harun MAYA, Robinson RW, Johnson J & Uddin MN. Allelopathic potential of Chrysanthemoides monilifera subsp. monilifera (boneseed): A novel weapon in the invasion processes. South African Journal of Botany. 2014; 93: 157-166.
http://doi.org/10.1016/j.sajb.2014.04.008
21. Ullah N, Haq IU, Safdar N & Mirza B. Physiological and biochemical mechanisms of allelopathy mediated by the allelochemical extracts of Phytolacca latbenia (Moq.) H. Walter. Toxicology and Industrial Health. 2015; 31(10): 931-937.
http://doi.org/10.1177/0748233713483205
22. Ashraf R, Sultana B, Yaqoob S & Iqbal M. Allelochemicals and crop management: A review. Curr Science. 2017; 3(1): 1-13.
23. Poulin RX, Hogan S, Poulson-Ellestad KL, Brown E, Fernandez FM & Kubanek J. Karenia brevis allelopathy compromises the lipidome, membrane integrity, and photosynthesis of competitors. Scientific Reports. 2018; 8(1): 9572.
http://doi.org/10.1038/s41598-018-27845-9
24. Araniti F, Sanchez-Moreiras AM, Grana E, Reigosa MJ & Abenavoli MR. Terpenoid trans-caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adult Arabidopsis. Plant biology. 2017; 19(1): 79-89.
http://doi.org/10.1111/plb.12471
25. Goga M, Antreich SJ, Bačkor M, Weckwerth W & Lang I. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy. Protoplasma. 2017; 254(3):
1307-1315. http://doi.org/10.1007/s00709-016-1022-7
26. Li P, Ding L, Zhang L, He J & Huan Z. Weisiensin B inhibits primary and lateral root development by interfering with polar auxin transport in Arabidopsis thaliana. Plant Physiology and Biochemistry. 2019; 139: 738-745.
http://doi.org/10.1016/j.plaphy.2019.04.020
27. Lupini A, Araniti F, Mauceri A, Princi MP, Sorgona A, Sunseri F, Varanini Z & Abenavoli MR. Coumarin enhances nitrate uptake in maize roots through modulation of plasma membrane H+-ATPase activity. Plant Biology. 2018; 20(2): 390-398.
http://doi.org/10.1111/plb.12674
28. Mohammadkhani N & Servati M. Nutrient concentration in wheat and soil under allelopathy treatments. Journal Plant Research. 2018; 131(1): 143-155.
http://doi.org/10.1007/s10265-017-0981-x
29. Syahri R, Widaryanto E & Wicaksono KP. Bioactive compound from mangoes leaves extract as potential soil bioherbicide to control amaranth weed (Amaranthus spinosus Linn.). Journal of Degraded and Mining Lands Management. 2017; 4(3): 829-836.
http://doi.org/10.15243/jdmlm.2017.043.829
30. Bortolo TDSC, Marchiosi R, Vigano J, de Cassia S-S, Ferro AP, Barreto GE, de Souza BG, Abrahao J, dos Santos WD & Ferrarese-Filho O. Trans-aconitic acid inhibits the growth and photosynthesis of Glycine max. Plant Physiology and Biochemistry. 2018. 132: 490-496. http://doi.org/10.1016/j.plaphy.2018.09.036
31. Long M, Tallec K, Soudant P, Le GF, Donval A, Lambert C, Sarthou G, Jolley DF & Hegaret H. Allelochemicals from Alexandrium minutum induce rapid inhibition of metabolism and modify the membranes from Chaetoceros muelleri. Algal Research. 2018; 35: 508-518. http://doi.org/10.1016/j.algal.2018.09.023
32. Lelong A, Haberkorn H, Le Goic N, Hegaret H & Soudant P. A new insight into allelopathic effects of Alexandrium minutum on photosynthesis and respiration of the diatom Chaetoceros neogracile revealed by photosynthetic-performance analysis and flow cytometry. Microbial Ecology. 2011; 62(4): 919-930. http://doi.org/10.1007/s00248-011-9889-5
33. Yuliyani ED, Darmanti S & Hastuti ED. Allelochemical effects of Chromolaena odorata L. against photosynthetic pigments and stomata of Ageratum conyzoides L. leaves. Journal of physics: conference series. 2019; 1217(1): 012149.
http://doi.org/10.1088/1742-6596/1217/1/012149
34. Shahzad B, Rehman S, Bajwa AA, Hussain S, Rehman A, Cheema SA, Abbas T, Ali A, Shah L, Adkins S & Li P. Utilizing the allelopathic potential of Brassica species for sustainable crop production: A review. Journal of Plant Growth Regulation. 2019; 38(1): 343-356. http://doi.org/10.1007/s00344-018-9798-7
35. Dayan FE, Howell JL & Weidenhamer JD. Dynamic root exudation of sorgoleone and its in planta mechanism of action. Journal of Experimental Botany. 2009; 60(7): 2107-2117. http://doi.org/10.1093/jxb/erp082
36. Mehta P, Jajoo A, Mathur S, & Bharti S. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiology and Biochemistry. 2010; 48(1): 16-20. http://doi.org/10.1016/j.plaphy.2009.10.006
37. Sowiński J, Dayan FE, Głąb L & Adamczewska-Sowińska K. Sorghum allelopathy for sustainable weed management. In: Plant defence: Biological control. 2020: 263-288.
38. Seigler, DS. Chemistry and mechanisms of allelopathic interaction. Agronomy Journal. 1996; 88: 867. http://doi.org/10.2134/agronj1996.00021962003600060006x
39. Narwal, S. Allelopathy in Crop Production. Scientific Publishers. 2004: 303.
40. Teerarak M, Charoenying P & Laosinwattan C. Physiological and cellular mechanisms of natural herbicide resource from Aglaia odorata Lour. on bioassay plants. Acta Physiologiae Plantarum. 2012; 34(4): 1277-1285. http://doi.org/10.1007/s11738-011-0923-5
41. Singh HP, Batish DR, Kaur S, Setia N & Kohli RK. Effects of 2-benzoxazolinone on the germination, early growth and morphogenetic response of mung bean (Phaseolus aureus). Annals of Applied Biology. 2005; 147(3): 267-274.
http://doi.org/10.1111/j.1744-7348.2005.00031.x
42. Batish DR, Gupta P, Singh HP & Kohli RK. L-DOPA (L-3, 4-dihydroxyphenylalanine) affects rooting potential and associated biochemical changes in hypocotyl of mung bean, and inhibits mitotic activity in onion root tips. Plant Growth Regulation. 2006; 49(2): 229-235. http://doi.org/10.1007/s10725-006-9114-6
43. Gulzar A, Siddiqui MB & Shazia B. Allelopathic potential of rhizosphere powder amended soil (LPRS) and inorganic profiling of Eclipta alba (L.) Hassk. On Growth of Crops and Weeds. Thai Journal of Agricultural Science. 2014; 47(3): 133-139.
44. Mushtaq W, Ain Q & Siddiqui MB. Cytotoxic allelochemicals induce ultrastructural modifications in Cassia tora L. and mitotic changes in Allium cepa L.: A weed versus weed allelopathy approach. Protoplasma. 2019; 256(3): 857-871.
http://doi.org/10.1007/s00709018-01343-1
45. Jilani G, Mahmood S, Chaudhry AN, Hassan I & Akram M. Allelochemicals: sources, toxicity and microbial transformation in soil-A review. Annals of Microbiology. 2008; 58(3): 351-357. http://doi.org/10.1007/BF03175528
46. Gatti AB, Ferreira AG, Arduin M & Perez SCGDA. Allelopathic effects of aqueous extracts of Artistolochia esperanzae O. Kuntze on development of Sesamum indicum L. seedlings. Acta Botanica Brasilica. 2010; 24(2): 454-461.
http://doi.org/10.1590/S0102-33062010000200016
47. Uniyal AK & Chhetri S. An assessment of phytotoxic potential of promising agroforestry trees on germination and growth pattern of traditional field crops of Sikkim Himalaya, India. American Eurasian Journal Scientific Research. 2010; 5(4): 249-256.
48. Kobayashi K. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biology and Management. 2004; 4(1): 1-7. http://doi.org/10.1111/j.1445-6664.2003.00112.x
49. Farooq N, Abbas T, Tanveer A & Jabran K. Allelopathy for weed management. In: Reference Series in Phytochemistry Co-Evolution of Secondary Metabolites. 2020: 505-519. http://doi.org/10.1007/978-3-319-6397-6-16
50. Lambers H, Mougel C, Jaillard B & Hinsinger P. Plant-microbesoil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil. 2009; 321(1): 83-115.
http://doi.org/10.1007/s11104-009-0042-x
51. Jamil M, Cheema ZA, Mushtaq MN, Farooq M & Cheema MA. Alternative control of wild oat and canary grass in wheat fields by allelopathic plant water extracts. Agronomy for Sustainable Development. 2009; 29(3): 475-482. http://doi.org/10.1051/agro/2009007
52. Bhadoria PBS. Allelopathy: a natural way towards weed management. American Journal of Experimental Agriculture. 2011; 1(1): 7-20. http://doi.org/10.9734/AJEA/2011/002
53. Amb MK & Ahluwalia AS. Allelopathy: potential role to achieve new milestones in rice cultivation. Rice Science. 2016; 23(4): 165-183. http://doi.org/10.1016/j.rsci.2016.06.001
54. Cheema ZA, Farooq M & Khaliq A. Application of allelopathy in crop production: Success story from Pakistan. Allelopathy: Current trends and future applications. Springer, Berlin. 2013; 113-143. http://doi.org/10.1007/978-3-642-30595-5-6
55. Abbas T, Nadeem MA, Tanveer A & Chauhan BS. Can hormesis of plant-released phytotoxins be used to boost and sustain crop production? Crop Protection. 2017; 93: 69-76. http://doi.org/10.1016/j.cropro.2016.11.020
56. Gliessman SR. Allelopathic Effects of Crops. Technology and Engineering, Santa Cruz. 2007: 384.
57. Sani I, bdulhamid A & Bello F. Eucalyptus camaldulensis: Phytochemical composition of ethanolic and aqueous extracts of the leaves, stembark, root, fruits and seeds. Journal of Scientific and Innovative Research. 2014; 3(5): 523-526.
http://doi.org/10.31254/jsir.2014.3510
58. Shayoub M El, Dawoud ADH, Abdelmageed MAM, Ehassan AM. & Ehassan AM. Phytochemical analysis of leaves extract of Eucalyptus camaldulensis Dehnh. Omdurman Journal of Pharmaceutical Science. 2015; 2(1): 64-71.
59. Cossalter C & Pye-Smith C. Fast-wood Forestry: Myths and Realities. Center for International Forestry Research. Indonesia. 2003; 1: 54.
http://doi.org/10.17528/cifor/001257
60. Assareh MH & Sardabi H. Eucalyptus, Description, Illustration and Propagation by Advanced Techniques. Research Institute of Forests and Rangelands Publications. 2007: 672.
61. Vecchio M, Loganes C & Minto C. Beneficial and Healthy Properties of Eucalyptus Plants: A Great Potential Use. The Open Agriculture Journal, 2016; 10(1): 52-57.
http://doi.org/10.2174/1874331501610010052
62. Hartman H, Kester D & Davis F. Plant Propagation, Principle and Practices. Prentice Hall International Editions. 1990: 647.
63. Ikic I, Maricevic M, Tomasovic S, Gunjaca J, Sarcevic Z & Arcevic H. The effect of germination temperature on seed dormancy in creation-grown winter wheats. Euphytica. 2012; 188(1): 25-34. http://doi.org/10.1007/s10681-012-0735-8
64. Arnon DI. Copper enzymes is isolated chloroplasts pollyphenol oxidase in Beta vulgaris. Plant physiology. 1949; 24(1): 1-15.
65. Tanase C, Bujor OC & Popa VI. Phenolic natural compounds and their influence on physiological processes in plants. In Polyphenols in Plants, 2nd ed.; Watson, RR. Ed. Academic Press: Cambridge MA, USA, 2019: 45-58.
66. Li J, Evon P, Ballas S, Trinh HK, Xu L, Van Poucke C, Van Droogenbroeck B, Motti P, Mangelinckx S, Ramirez A, et al. Sunflower bak extract as a biostimulant suppresses reactive oxygen species in salt-stressed Arabidopsis. Frontiers Plant Science. 2022; 13: 837441. http://doi.org/10.3389/fpls.2022.837441
67. Rashid HU, Khan A, Hassan G, Khan SU, Saeed M, Khan SA, Khan SM & Hashim S. Weed suppression in maize (Zea mays L.) through the allelopathic effects of sorghum [Sorghum bicolor (L.) Conard Moench.] sunflower (Helianthus annuus L.) and parthenium (Parthenium hysterophorus L.) plants. Applied Ecology and Environmental Research. 2020; 18(4): 5187-5197. http://doi.org/10.15666/aeer/1804-51875197
68. Pula J, Zandi P, Stachurska-Swakori A, Barabasz-Krasny B, Mozdžen K & Wang Y. Influence of alcoholic extracts from Helianthus annnus L. roots on the photosynthetic activity of Sinapis alba L. cv. Barka plants. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science. 2019; 70: 8-13. http://doi.org/10.1080/09064710.2019.1661509
69. Gurmu WR. Effects of Aqueous Eucalyptus Extracts on Seed Germination and Seedling Growth of Phaseolus vulgaris L. and Zea mays L. Open Access Library Journal. 2015; 2(9): 1-8. http://doi.org/10.4236/oalib.1101741
70. Awadallah B & Eman O. Allelopathic Effect of Eucalyptus (Eucalyptus camaldulensis Dehnh) Leaf on Seed Germination and Seedling Growth of some Poaceous Crops. International Journal of Forest, Animal and Fisheries Research. 2017; 1(4): 34-40.
http://doi.org/10.22161/ijfaf.1.4.4
71. Sasikumar K, Vijayalakshmi C & Parthiban KT. Alleopathic effects of Eucalyptus on blackgram (Phaseolus mungo L.). Allelopathy Journal. 2002; 9(2): 205-214.
72. Shaddam MO, Aktar MM, Shiton AKR, Islam MS & Rahman M M. Allelopathic effects of Eucalyptus camaldulensis on germination and seedling growth of mungbean. Journal of Bioscience and Agriculture Research. 2020; 23(1): 1894-1900.
http://doi.org/10.18801/jbar.230120.233
73. Oliveira A, Pereira S, Cândido A, Laura V& Peres M. Can al-lelopathic grasses limit seed germination and seedling growth of mutambo? A test with two species of Brachiaria grasses. Planta Daninha. 2016; 34(4): 639-648. http://doi.org/10.1590/s0100-83582016340400003
74. Alshahrani TS & Suansa NI. Application of biochar to alleviate effects of allelopathic chemicals on seed germination and seedling growth. BioResources. 2020; 15(1): 382-400. http://doi.org/10.15376/biores.15.1.382-400
75. Zohaib A, Tabassum T, Anjum SA, Abbas T & Nazir U. Allelopathic effect of some associated weeds of wheat on germinability and biomass production of wheat seedlings. Planta Daninha. 2017; 35(1): 1-12. http://doi.org/10.1590/s0100-83582017350100089
76. Nishida N, Tamotsu S, Nagata N, Saito C & Sakai A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. Journal of Chemical Ecology. 2005; 31(5): 1187-1203. http://doi.org/10.1007/s10886-005-4256-y
77. Ataollahi R, Dejam M & Khaleghi SS. Phytotoxic effects of Eucalyptus globulus leaf
extract on Solanum nigrum. South-Western Journal. Horticulture Biology Environment. 2014; 5(1): 43-53.
78. Morsi MM & Abdelmigid HM. Allelopathic activity of Eucalyptus globulus leaf aqueous extract on Hordeum vulgare growth and cytogenetic behaviour. Australian Journal of Crop Science. 2016; 10(11): 1551-1556. http://doi.org/10.21475/ajcs.2016.10.11.PNE122
79. Janusauskaite D & Kadzien G. Influence of different intensities of tillage on physiological characteristics and productivity of crop-rotation plants. Plants; 2022; 11(22): 3107.
http://doi.org/10.3390/plants11223107
80. Ayalew A & Asfaw Z. Allelophatic Effects of Gravellia Robusta, Eucalyptus Camaldulensis and Casuarina Equisetifolia on Germination and Root Length of Maize and Wheat. International Journal of Research Studies in Agricultural Sciences (IJRSAS). 2020; 6(11): 15-20. http://doi.org/10.20431/2454-6224.0611004
81. Kandhro MN, Jogi Q, Buriro M, Soomro AA, Laghari GM & Khaskheli AN. Germination and seedling growth of Convolvulus arvensis L. and Cyperus rotundus L. under the allelopathic influence of Eucalyptus camaldulensis (L.) leaves. Sarhad Journal of Agriculture. 2016; 32(3): 252-257. http://doi.org/10.17582/journal.sja/2016.32.3.252.257
82. Sousa MV, Farias SGG, Castro DP, Silva RB, Silva DYBO, Dias BAS, Silva AF, Santos GNL, Matos DCP & Oliveira CVA. Allelopathy of the Leaf Extract of Eucalyptus Genetic Material on the Physiological Performance of Millet Seeds. American Journal of Plant Sciences. 2018; 9: 34-45. http://doi.org/10.4236/ajps.2018.91004
83. Noor Mohamed MB, Shukla AK, Jangid BL & Vikas Khandelwal. Allelopathy effect of eucalyptus on seed germination and growth of calendula and marigold. Indian Journal of Horticulture. 2021; 73(3): 304-310. http://doi.org/10.5958/0974-0112.2021.00044.X
84. Dafaallah AB & El-Twom EO. Allelopathic effect of eucalyptus (Eucalyptus camaldulensis Dehnh) leaf on seed germination and seedling growth of some poaceous crops. International Journal of Forest, Animal and Fisheries Research (IJFAF). 2017; 1(4): 34-40.
http://doi.org/10.22161/ijfaf.1.4.4
85. Lwan SA, Suleiman K & Iortsuum DN. Effects of some allelochemicals of Eucalyptus species on germination and radicle growth of Arachishypogya. Bayero Journal of Pure and Applied Sciences. 2011; 4(1): 59-62. http://doi.org/10.4314/bajopas.v4i1.13
86. Saeed JA, Al-Rawi ER & Ibraheem FK. The effect of aqueous leaves extracts of Eucalyptus camaldulensis on germination and growth of three weed species. Rafidain Journal of Science. 2013; 24(3): 1-10. http://doi.org/10.33899/rjs.2013.71034
87. Boulekbache-Makhlouf L, Meudec E, Mazauric JP, Madani K & Cheynier V. Qualitative and semi-quantitative analysis of phenolics in Eucalyptus globulus leaves by high-performance liquid chromatography coupled with diode array detection and electrospray ionisation mass spectrometry. Phytochem Analysis. 2013; 24(2): 162-170.
http://doi.org/10.1002/pca.2396
88. Yong WTL, Ades PK, Goodger JQ, Bossinger G, Runa FA, Sandhu KS & Tibbits JF. Using essential oil composition to discriminate between myrtle rust phenotypes in Eucalyptus globulus and Eucalyptus obliqua. Industrial Crops and Products. 2019; 140: 111595. http://doi.org/10.1016/j.indcrop.2019.111595
89. Jaime MDI & Ferrer MAB. Post-emergent herbicidal activity of Eucalyptus globulus
Labill. essential oil. Nereis: Iberoamericana Interdisciplinar de Métodos, Modelización y Simulación. 2018; 25-36. http://doi.org/10.3390/mol2net-04-05374
90. Vaghar MS, Sayfzadeh S, Zakerin HR, Kobraee S & Valadabadi SA. Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. Journal Plant Nutrition. 2020; 43(18): 2740-2756.
http://doi.org/10.1080/01904167.2020. 1793180
91. Hussain I, Baloch MS, Khan EA & Khan AA. Morphological and physiological response of maize to some allelopathic plant extracts. Pakistan Journal of Weed Science Research; Islamabad. 2019; 25(2): 137-145.
92. Siyar S, Majeed A, Muhammad Z, Ali H & Inayat N. Allelopathic effect of aqueous extracts of three weed species on the growth and leaf chlorophyll content of bread wheat. Acta Ecologica Sinica. 2019; 39: 63-68. http://doi.org/10.1016/j.chnaes.2018.05.007
93. Nafees A & Abbas A. Bioassay test of allelopathic potential of sunflower (Helianthus annuus L.) against mung bean (Vigna radiate (L.) R.Wilczek). Journal of Phytosciences. 2021; 1(1): 70-79.
94. Pruthvi Raj HM, Dhananjaya BN, Maruthi Prasad BN, Raghunatha Reddy RL, Shankarappa TH & Ehsaullah Seraji. Allelopathic potentiality of eucalyptus tree parts on germination and seedlings growth of finger millet (Eleusine coracana) and tomato (Solanum lycopersicum L.). The Pharma Innovation Journal. 2022; 11(12): 4962-4969.
95. Chi-Ming Y, Chyoung-Ni L, & Chang-Hung C. Effect of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedling: I. Inhibition of supply-orientation. Botanical Bulletin of Academia Sinica. 2002; 43: 299-304.
96. Daizy RB, Lavanya K, Singh HP, & Kohli RK. Phenolic allelochemicals released by Chenopodium murale affect the growth nodulation and macromolecule content in chickpea and pea. Plant Growth Regulation. 2007; 51(2): 119-128.
http://doi.org/10.1007/s10725-006-9153-z
97. Gniazdowska A & Bogatek R. Allelopathic interactions between plants. Multi-site action of allelochemicals. Acta Physiologiae Plantarum. 2005; 27(3): 395-407.
http://doi.org/10.1007/s11738-005-0017-3
98. Taiz L & Zeiger E. Plant Physiology. 5th Ed. Artmed, Porto Alegre; 2013.
99. Radhakrishnan R, Alqarawi AA & Abd_Allah EF. Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety. 2018; 158(2): 131-138. http://doi.org/10.1016/j.ecoenv.2018.04.018