Effects of Aerobic Training and Chlorella Consumption on Renal Antioxidant Indices in Male Diabetic Rats
Subject Areas :امینه صحرانورد 1 , افسانه امامی مقدم 2
1 - استادیارگروه تربیت بدنی،دانشکده علوم انسانی،دانشگاه ازاداسلامی، واحدشبستر،شبستر،ایران
2 - کارشناسی ارشدتربیت بدنی دانشکده علوم انسانی، دانشگاه ازاداسلامی،واحدتبریز،تبریز،ایران
Keywords: kidney, Aerobic training, Chlorella, Diabetes,
Abstract :
Inroduction & Objective:The aim of this study was to investigate the effects of eight weeks of aerobic exercise and chlorella supplementation on renal antioxidants in diabetic rats. Materials and Methods:50 male adult wistar rats were randomized into healthy control, diabetic control, training, supplement (chlorella) and training-supplementation(synergistic intervention) groups and the diabetes induced using intraperitoneal injection of sterptozocin (STZ). Throughout the intervention period, chlorella extract was consumed daily with the dosage equal to 5% of body weight prior to the morning meal for eight weeks and the training was included on treadmill running for 5 days/week (on a smart automated animal device). The data were compared using two way factorial and one way ANOVA. Results: In all groups the higher superoxide dismutase (SOD) and catalase (CAT) activities as well as lower body weight compared to healthy controls were remarkable following to intervention period (P<0.05), however; all three interventions diminished the diabetes induced increases in the activity of these enzymes as well as body weight reductions (P<0.05). Furthermore, while there were no between group differences in the effects from training, chlorella supplementation or synergistic intervention upon SOD activity, however; the synergistic effect was better than both them to diminish diabetes induced changes in CAT activity and/or body weight. there is no significant differences were observed in plasma glucose level in between the training and synergistic intervention groups with healthy controls, while a significant difference were demonstrated for these two groups compared to chlorella group (P<0.05). Conclusion: These elevated enzymes activities could probably attributable to the amelioration of the oxidative stress by the organism in the kidneys and the higher lipid peroxidation and hazardous effect from diabetes on kidneys. However; because of the lack of similar evidences and some methodological limitations in this study, more research remains to be done in this area.
1-اسماعیلی، م.، بهرام، د.، فتحالهی، ش.، فضلالله، د. 1397. اثر تمرینات هوازی همراه با مکمل یاری کلرلا بر مقاومت به انسولین و سطح سرمی گرلین زنان چاق. مجله زنان، مامایی و نازایی ایران21، 10 ص48-51.
2-خاکی، آ .، فرنام، ع.، احمدی آشتیانی، ح.، رضازاده، ش.، رستگار، ح.، آقامحمدی، ر.1389. بررسی اثرات عصاره ریحان بر میزان آپوپتوزیس بافت رحم در موشهای صحرایی تحت تاثیر در میدانهای الکترومغناطیسی. فصلنامه علمی پژوهشی گیاهان دارویی، جلد ۱ شماره ۳۳ ص ۴۹-۵۷.
3-دوستار، ی.، رضایی، ع .، مهاجری، د. 1390. اثرات عصاره دانه انگور بر آپوپتوز سلول های قلبی در موش های صحرایی دیابتی شده توسط استرپتوزوتوسین. مجله علوم پزشکی دانشگاه آزاد اسلامی. دوره 21 ،شماره 3 ، ص 168 تا 174 .
-رشید پور، ف.، فرزانگی پ. ، تقی پور م. 1394. اثر تعاملی تمرین شنا و عصاره برگ گیاه تلکا (آربوتین) بر وضعیت اکسیدانی و آنتی اکسیدانی تام بافت کبد رت های دیابتی شده با آلوکسان. پژوهشنامه فیزیولوژی ورزشی کاربردی. دوره 11، شماره 22، ص 75-86.
5-سلیمی، ز.، حیدری، ر.، نجاتی، و.، اسکندری، آ. 1391. اثر حفاظتی عصاره آبی میوه سماق بر فعالیت آنزیم کاتالاز و هیستوپاتولوژی کبد در رت های دیابتی شده با آلوکسان. مجله دانشگاه علوم پزشکی قم ، دوره 6 , شماره 2، ص 44-52.
6- معینی فرد، م.، هدایتی م. 1393. آلوکسان و استرپتوزوتوسین، ابزار پژوهش دیابت. پژوهش نامۀ فیزیولوژی ورزشی کاربردی. سال دهم. شماره بیستم ص 13-22.
7.Afkhami Ardakani, M., Rashidi, M.(2005). Type 2 diabetes and its risk factors. JRUMS, 4(4);348-365.
8.Aizzat, O., Yap, S. W., Sopiah, H., Madiha, M., Hazreen, M., Shailah, A., Musalmah, M. (2010). Modulation of oxidative stress by Chlorella vulgaris in streptozotocin (STZ) induced diabetic Sprague-Dawley rats. Advances in Medical Sciences, 55(2); 281-288.
9.Aksu, I., Topcu, A., Camsari, U. M., Acikgoz, O. (2009). Effect of acute and chronic exercise on oxidant–antioxidant equilibrium in rat hippocampus, prefrontal cortex and striatum. Neuroscience letters, 452(3); 281-285.
10.Aliahmat, NS., Noor, MRM., Yusof, WJW., Makpol, S., Ngah, WZW., Yusof, YAM. (2012). Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice. Clinics, 67(12);1447-1454.
11.Alipour, M., Salehi, I., Soufi, F. G. (2012). Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus. Iranian Red Crescent Medical Journal, 14(4); 222- 228.
12.Amano, Y., Kawakubo, K., Lee, J., Tang, A. (2004). Correlation between dietary glycemic index and cardiovascular disease risk factors among Japanese women. European Journal of Clinical Nutrition, 58(11);1472- 1478.
13.Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40(4); 405-412.
14.Cai, X., Yang, Q., Wang, S.(2015). Antioxidant and hepatoprotective effects of a pigment–protein complex from Chlorella vulgaris on carbon tetrachloride-induced liver damage in vivo. RSC Advances, 5(116);96097-96104.
15.Chin, S-F., Ibahim, J., Makpol, S., Hamid, NAA., Latiff, AA., Zakaria, Z. (2011). Tocotrienol rich fraction supplementation improved lipid profile and oxidative status in healthy older adults: A randomized controlled study. Nutrition & metabolism, 8(1); ID: 42. doi: 10.1186/1743-7075-8-42.
16.De Angelis, K., Cestari, I., Barp, J., Dall'Ago, P., Fernandes, T., Homem de Bittencourt, P. (2000). Oxidative stress in the latissimus dorsi muscle of diabetic rats. Brazilian Journal of Medical and Biological Research, 33(11);1363-1368.
17.De Sousa, C. V., Sales, M. M., Rosa, T. S., Lewis, J. E., De Andrade, R. V., Simões, H. G. (2017). The antioxidant effect of exercise: a systematic review and meta-analysis. Sports Medicine, 47(2); 277-293.
18.Dhindsa, R. S., Matowe, W. (1981). Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. Journal of experimental botany, 32(1); 79-91.
19.Eidi, M., Eidi, A., Zamanizadeh, H. (2005). Effect of Salvia officinalis L. leaves on serum glucose and insulin in healthy and streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 100(3); 310-313.
20.El-Baky, H. H. A. (2009). Enhancing antioxidant availability in grains of wheat plants grown under seawater-stress in response to microalgae extracts treatments. African Journal of Biochemistry Research, 3(4); 077-083.
21.Fisher-Wellman, K., Bloomer, R. J. (2009). Acute exercise and oxidative stress: a 30 year history. Dynamic medicine, 8(1); article ID: 1.
22.Fridovich, I. (1983). Superoxide dismutases: regularities and irregularities. Harvey lectures, 79; 51-75.
23.Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Shimomura, I. (2017). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation, 114(12); 1752-1761.
24.Genet, S., Kale, RK., Baquer, NZ. (2002). Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek(Trigonella foenum graecum). Molecular and Cellular Biochemistry, 236(1-2);7-12.
25.Giacco, F., Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation research, 107(9); 1058-1070.
26.Gordon, L. A., Morrison, E. Y., McGrowder, D. A., Young, R., Fraser, Y. T. P., Zamora, E. M., Irving, R. R. (2008). Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes. BMC Complementary and Alternative Medicine, 8(1); article ID: 21.
27.Guzman, S., Gato, A., Calleja, J. (2001). Anti in flammatory, analgesic and free radical scavenging activities of the marine microalgae chlorella stigma tophora and Phaeodactylum tricornutum. Phytotherapy Research, 15(3); 224-230.
28.Kakkar, R., Mantha, SV., Kalra, J., Prasad, K. (1996). Time course study of oxidative stress in aorta and heart of diabetic rat. Clinical Science, 91(4);441-448.
29.Kei, S. (1987). Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clinica chimica acta, 90(1); 37-43.
30.Kim, Y. J., Jeong, S., Kwon, S., Kim, M. K. (2009). Effect of Chlorella vulgaris intake on antioxidative capacity in rats oxidatively stressed with dietary cadmium. Food Science and Biotechnology. 18(5); 1055-1062.
31.Lee, S. H., Kang, H. J., Lee, H.-J., Kang, M.-H., Park, Y. K. (2010). Six-week supplementation with Chlorella has favorable impact on antioxidant status in Korean male smokers. Nutrition, 26(2); 175-183.
32.Mizoguchi, T., Takehara, I., Masuzawa, T., Saito, T., Naoki, Y. (2008). Nutrigenomic studies of effects of chlorella on subjects with high-risk factors for lifestyle-related disease. Journal of Medicinal Food, 11(3); 395-404. 33.Nakashima, Y., Ohsawa, I., Konishi, F., Hasegawa, T., Kumamoto, S., Suzuki, Y., Ohta, S. (2009). Preventive effects of Chlorella on cognitive decline in age-dependent dementia model mice. Neuroscience Letters,.464(3), 193-198.
34.Park, SW., Goodpaster, BH., Lee, JS., Kuller, LH., Boudreau, R., De Rekeneire, N. (2009). Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes care, 32(11); 1993-1997.
35.Panahi, Y., Ghamarchehreh, M., Beiraghdar, F., Zare, R., Jalalian, H., Sahebkar, A. (2012). Investigation of the effects of Chlorella vulgaris supplementation in patients with non-alcoholic fatty liver disease: a randomized clinical trial. Hepato-gastroenterology, 59(119); 20-29.
36.Radak, Z., Chung, H. Y., Goto, S. (2008). Systemic adaptation to oxidative challenge induced by regular exercise. Free Radical Biology and Medicine, 44(2); 153-159.
37.Rarick, KR., Pikosky, MA., Grediagin, A., Smith, TJ., Glickman, EL., Alemany, JA. (2007). Energy flux, more so than energy balance, protein intake, or fitness level, influences insulin-like growth factor-I system responses during 7 days of increased physical activity. Journal of Applied Physiology, 103(5); 1613-1621.
38.Shibata, S., Hayakawa, K., Egashira, Y., Sanada, H. (2007). Hypocholesterolemic mechanism of Chlorella: Chlorella and its indigestible fraction enhance hepatic cholesterol catabolism through up-regulation of cholesterol 7α-hydroxylase in rats. Bioscience, Biotechnology, And Biochemistry, 71(4); 916-925.
39.Shibata, S., Natori, Y., Nishihara, T., Tomisaka, K., Matsumoto, K., Sansawa, H., Nguyen, V. C. (2003). Anti oxidant and anti-cataract effects of chlorella on rats with streptozotocin-induced diabetes. Journal of Nutritional Science and Vitaminology, 49(5); 334-339.
40.Van Dam, PS., Gispen, WH., Bravenboer, B., Van Asbeck, BS., Erkelens, DW., Marx, JJ. (1995). The role of oxidative stress in neuropathy and other diabetic ions. Diabetes/Metabolism Research and Reviews, 11(3);181-192.
41.Yamagishi, S., Nakamura, K., Inoue, H. (2005). Therapeutic potentials of unicellular green alga Chlorella in advanced glycation end product (AGE)-related disorders. Medical hypotheses, 65(5); 953-955.
42.Wuorinen, EC., Page, R., Wuorinen, SH. (2017). Acute and chronic varied exercise intensity effects on total antioxidant capacity and protein carbonylation. The FASEB Journal,31(1 Supplement); 839.26-36.
43.Zhang, D., Lee, Y. (1997). Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. Journal of applied phycology, 9(5), 459-463.
_||_