Types of Mathematical Explanation
Subject Areas : Philosophy
Keywords: internal and external explanat, local and holistic explanation, demonstrative and non-demonstr, symbolic and non-symbolic expl, avoidable and unavoidable expl,
Abstract :
One good way to grasp the concepts is to study their instances. This article examines the types of mathematical explanation and introduces several new types of it. The two famous types of mathematical explanation are internal and external explanations. The local–holistic distinction is also a distinction used in philosophy of mathematics as a strategy of explanation. But it seems that we can distinguish a greater variety of mathematical explanations and thereby gain a better understanding of it. For example, demonstrative and non-demonstrative explanations can be separated. These two explanations are given, respectively, in the process of proving and such processes as modeling and idealization. This division is based on the theoretical or cognitive role of explanations, we can say. Moreover, we must separate the symbolic from the non-symbolic, the avoidable from the unavoidable, explanations. Some explanations can be removed from a process of reasoning, without prejudice to that process. They are given for educational or pragmatic purposes. But others are not avoidable, because the main burden of explanation is on them. This article separates this ten explanations and introduces several new types with different examples.
همپل، کارل، فلسفهى علوم طبیعی، ترجمه حسین معصومی همدانی، مرکز نشر دانشگاهی، 1380ش.
لازی، جان، درآمدی تاریخی به فلسفهى علم، ترجمه علی پایا، سمت، 1377ش.
بنتون، تد، و یان کرایب، فلسفهى علوم اجتماعی، ترجمه شهناز مسمی پرست و محمود متحد، آگه، 1389ش.
فروند، ژولین، نظریههای مربوط به علوم انسانی، ترجمه علی محمد کاردان، مرکز نشر دانشگاهی، 1387ش.
Baker, A., “Are there Genuine Mathematical Explanations of Physical Phenomena?”, Mind, 2005.
Barwise, J. & J. Etchmendy, “Visual Information and Valid Reasoning, in Visualization in Teaching and Learning Mathematics”, Mathematical Association of America, W. Zimmermann and S. Cunningham(eds.), Washington, DC, 1991.
Brown, J. R., Philosophy of Mathematics: A Contemporary Introduction to the World of Proofs and Pictures, Routledege, 2008.
Colyvan, M., An Introduction to the Philosophy of Mathematics (Cambridge Introductions to Philosophy), University of Sydney, Sydney, Australia NSW, 2011.
Friedman, M., “Explanation and Scientific Understanding”, The Journal of Philosophy, 1974.
Kitcher, P., “Explanatory Unification”, Philosophy of Science, 1981.
Mancosu, P. “Explanation in Mathematics”, The Stanford Encyclopedia of Philosophy, 2008.
Rota, G.C., The Phenomenology of Mathematical, Proof. Netherlands: Kluwer Academic Publishers, 1997.
Steiner, M., “Mathematical Explanation”, Philosophical Studies, 1978.
Zelcer, M., “Against Mathematical Explanation”, Journal for General Philosophy of Science, 2013, Volume 44.