An investigation on the effect of fuel to oxidizer ratio on the structural properties of (Fe, Mn, Ni, Co, Cr)3O4 high entropy oxide
Subject Areas :azar esmaeilzaei 1 , Jalil Vahdati khaki 2 , سید عبدالکریم سجادی 3 * , sahar mollazadeh 4
1 - department of materials and metallurgical engineering, ferdowsi university of mashhad
2 - Vakil abad Blvd
3 - دانشیار، گروه مهندسی متالورژی و مواد، دانشگاه فردوسی مشهد
4 - department of materials and metallurgical emgineering
Keywords: High-entropy oxide, Solution combustion synthesis (SCS), Spinel structure,
Abstract :
The main object of this project is to synthesize (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide through the solution combustion synthesis (SCS) method in the presence of fuel glycine at various fuel to oxidizer (F/O) (0.9, 0.95, and 1) ratios. In order to do that, raw materials were separately dissolved in deionized water and then they were mixed together and heated to a temperature of 330°C using an electric heater. After the water evaporated, a self-sustained exothermic reaction occurred and the porous powders were obtained. X-ray diffraction (XRD) analysis results showed that single-phase (Fe, Mn, Ni, Co, Cr)3O4 oxides with a crystallinity degree of less than 60% at a fuel-to-oxidizer ratio of 0.90 and without any impurities were synthesized by glycine fuel. Additionally, high-resolution transmission electron microscopy (HRTEM) analysis provided evidence for the formation of the desired oxide. Furthermore, inductively coupled plasma (ICP) analysis results indicated the presence of Fe, Co, Ni, Cr, and Mn elements in the synthesized oxide with ratios of 1.0, 0.98, 0.96, 0.94 and 0.95, respectively that verify the chemical composition of the synthesized oxide aligns with the standard chemical composition. Additionally, Raman spectroscopy analysis and elemental surface analysis confirmed the homogeneity of the sample structures.
[1] D. Wang, S. Jiang, C. Duan, J. Mao, Y. Dong, K. Dong & et al, "Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance", J Alloys Compd, 2020;156158. vol. 21, no, 9, pp. 72-84, 2020.
[2] B. Petrovi, W. Xu, M. G. Musolino, F. Pantò, S. Patanè, N. Pinna & et al, "High-Entropy Spinel Oxides Produced via Sol-Gel and Electrospinning and Their Evaluation as Anodes in Li-Ion Batteries", J Electrochem Sci Technol, vol. 23, no, 11, pp. 1-19, 2022.
[3] J. Arshad, N, K. Janjua & R. Raza, "Synthesis of novel (Be,Mg,Ca,Sr,Zn,Ni)3O4 high entropy oxide with characterization of structural and functional properties and electrochemical applications", J Electrochem Sci Technol, vol. 12, no, 1, pp. 112-125, 2021.
[4] J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M. C. Quinn & et al, "High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics", Sci Rep, vol. 6, no, 11, pp. 2-11, 2016.
[5] S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin & et al. "A new class of high-entropy perovskite oxides", Scr Mater, vol. 23, no, 11, pp. 116–120, 2018.
[6] A. Mao, H. Z. Xiang, Z. G. Zhang, K. Kuramoto, H. Zhang & Y. Jia." A new class of spinel high-entropy oxides with controllable magnetic properties", J Magn Magn Mater, vol. 23, no, 11, pp. 1651–1660, 1988.
[7] Y. Zhang, Z. B. Jiang, S. K. Sun, W. M. Guo & et al, "Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction", J Eur Ceram Soc, vol. 39, no, 30, pp. 1657–1668, 2019.
[8] S. V. Divinski & A. V. Pokoev, "A Mystery of “Sluggish Diffusion” in High-Entropy Alloys", The Truth or a Myth? Diffus Found, vol. 23, no, 11, pp. 69-104, 2018.
[9] J. Gild, J. Braun, K. Kaufmann & et al. "A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0. 2W0.2)Si2", J Mater, vol. 5, no, 3, pp. 337-343, 2019.
[10] H. Chen, H. Xiang, F. Z. Dai, J. Liu & et al. "High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C", J Mater Sci Technol, vol. 35, no, 8, pp. 56-60, 2019.
[11] J. Niu, W. Li, P. Liu, K. Zhang & et al. "Effects of silicon content on the microstructures and mechanical properties of (AlCrTiZrV)-Six-N high-entropy alloy films", Entropy, vol. 21, no, 1, pp. 72-84, 2019.
[12] M. H. Hsieh & W.J. Shen, "Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings", Surf Coatings Technol, vol. 23, no, 11, pp. 18-23, 2013.
[13] H. Chen, W. Lin, Z. Zhang, K. Jie & et al, "Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization", ACS Mater Lett, vol. 1, no, 1, pp. 83-91, 2019.
[14] A. D. Dupuy, X. Wang & J. M. Schoenung, "Entropic phase transformation in nanocrystalline high entropy oxides", Mater Res Lett, vol. 7, no, 2, pp. 60-67, 2019.
[15]M. Stygar, M. J. Dąbrowa, M. Moździerz & et al. "Formation and properties of high entropy oxides in Co-Cr-Fe-Mg-Mn-Ni-O system", Novel (Cr,Fe,Mg,Mn,Ni)3O4 and (Co,Cr,Fe,Mg,Mn)3O4 high entropy spinels", J Eur Ceram Soc, vol. 40, no, 4, pp. 44-50, 2020.
[16] B. Talluri, K. Yoo & J. Kim, "High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as novel efficient electrocatalyst for methanol oxidation and oxygen evolution reactions", J Environ Chem Eng, vol. 10, no, 1, pp.53–60, 2022.
[17] B. Talluri, M. L. Aparna & N. Sreenivasulu, "High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as a high-performance supercapacitor electrode material", J Energy Storage, vol. 24, no, 11, pp. 16–23, 2021.
[18] ا. امیرکاوئی و ع. سعیدی، "تولید پودر کاربید کروم به روشهای سنتز احتراقی و مکانوشیمیایی"، فرآیندهای نوین در مهندسی مواد فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 2، صفحه 1-12، 1389.
[19] م. عادلی، ر. عبداله پور و م. سلطانیه، "بررسی تأثیر اندازه ذرات نیکل چگالی خام بر فازهای تشکیل شده و توزیع تخلخل درکامپوزیت NiAl-TiB2-TiC تولید شده به روش سنتز احتراقی"، فرآیندهای نوین در مهندسی مواد، دوره 12، شماره 4، صفحه 39-29، 1398.
[20] E. Garmroudi Nezhad, F. Kermani, Z. Mollaei, J. Vahdati Khakhi & S. Mollazadeh. "Interference of oxygen during the solution combustion synthesis process of ZnO particles: Experimental and data modeling approaches", J Ind Eng Chem, vol. 10, no, 13, pp. 24-38, 2022.
[21] م. بیهقی، "بررسی تأثیر فعالسازی مکانیکی و سرعت گرمایش بر تشکیل کامپوزیت نانوساختار NiAl-Al2O3 به روش سنتز احتراقی"، فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 4، صفحه 1-25، 1396.
[22] A. Mao, F. Quan, H. Z. Xiang & Z. G. Zhang, "Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder", J Mol Struct, vol. 23, no, 11, pp. 8-11, 2019.
[23] A. V. Saghir, S. M. Beidokhti, J. V. Khaki & A. Salimi, "One-step synthesis of single-phase (Co, Mg, Ni, Cu, Zn) O High entropy oxide nanoparticles through SCS procedure: Thermodynamics and experimental evaluation", J Eur Ceram Soc, vol. 41, no, 1, pp. 63-71, 2021.
[24] B. Liang & Y. Ai, "Spinel-type (FeCoCrMnZn)3O4 high-entropy oxide: Facile preparation and supercapacitor performance", Materials (Basel), vol. 13, no, 24, pp. 1-9, 2020.
[25] A. Esmaeilzaei, J. Vahdati Khaki, S. Sajjadi abdolkarim & S. Mollazadeh, "Synthesis and crystallization of (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide: The role of fuel and fuel-to-oxidizer ratio", J Solid State Chem, vol. 23, no, 11, pp. 16–26, 2023.
[26] D. Wang, Z. Liu, S. Du, Y. Zhang, H. Li, Z. Xiao & et al,"Low-temperature synthesis of small-sized high-entropy oxides for water oxidation", J Mater Chem A, vol. 7, no, 42, pp. 6-24, 2019.
[27] P. R. Graves, C. Johnston & J. J. Campaniello, "Raman scattering in spinel structure ferrites", Mater Res Bull, vol. 23, no, 11, pp. 16–20, 1988.