One-step synthesis of superparamagnetic iron oxide nanoparticles doped with zinc cations and coated with saccharides for biomedical applications
Subject Areas :Hamze Foratirad 1 , Mustafa Aghazade 2
1 - faculty member
2 - Faculty member
Keywords: nanoparticles, Iron Oxide, Magnetism, Electrochemical Synthesis, Saccharides,
Abstract :
In this paper, three-types of metal-cations doped superparamagnetic iron oxide nanoparticles (IONs) including glucose-grafted Zn2+-doped MNPs (glucose/Zn-IONs), sucrose-grafted Zn2+-doped IONs (sucrose/Zn-IONs) and starch-grafted Zn2+-doped IONs (starch/Zn-IONs) are reported. These IONs are fabricated by OH– ions electrochemical generation through cathodic deposition method. The saccharide capped layer onto the surface of deposited IONs and also zinc cations doping into their crystal structure were confirmed via Fourier-transform infrared spectroscopy, Field-emission scanning electron microscopy and Energy Dispersive X-ray techniques. Figures of the Field-emission scanning electron microscopy showed that the morphology of particles synthesized is spherical. Analyses revealed magnetite crystal structure with about 10% doped zinc for all the prepared samples. The magnetic evaluations by sample vibrating magnetometer (VSM) technique specified the superparamagnetic behaviors for the prepared samples, where low coercivity and remanence values (i.e. Hci=8.9Oe and Mr=0.24 emu/g for glucose/Zn- IONs; Hci=3.6Oe and Mr=0.09 emu/g for sucrose/Zn- IONs; Hci=9.2Oe and Mr=0.28 emu/g for starch/Zn- IONs) were observed.
_||_