Synthesis of Nickel Ferrite / Cadmium Oxide Compound Nanoparticles by Co-precipitation Method and Investigation its Sensitivity to Formaldehyde
Subject Areas :saied nosohiyan 1 , Hamid Reza Ebrahimi 2 , amirabas nourbakhsh 3 , Gholam Reza Amiri 4
1 - Ph.D. Student, Materials and Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Iran.
2 - Associate Professor, Advanced Engineering Research Center, Majlesi Branch, Islamic Azad University, Majlesi, Isfahan, Iran.
3 - Associate Professor, Department of Materials and Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Iran.
4 - Assistant Professor, Department of Physics, Felavarjan Branch, Islamic Azad University, Felavarjan, Isfahan, Iran.
Keywords: Sensitivity, Heat treatment, NiFe2O4-CdO Compound Nano Particles, Formaldehyde Gas,
Abstract :
In this study, NiFe2O4-CdO compound nanoparticles were prepared through co-precipitation. The two variables of the synthesis method are, respectively, the temperature gradient reaching the temperature of the heat treatment of 500 ° C at 10°C/sec, 35°C/sec and 60 °C/sec and the pure oxygen pressure as the heat treatment atmosphere for 0.5 hours, at 0.5 psi, 1 psi, and 1.5 psi. So, we found 9 samples, that the sample with the best sensitivity response to formaldehyde was characterized. X-ray diffraction, scanning electron microscopy, transition electron microscopy and X-ray fluorescence experiments were used to study the structure of these nanoparticles. X-ray diffraction experiment is confirmed formation of nickel ferrite and cadmium oxide phases. Scanning electron microscopy and transition electron microscopy experiments are confirmed nickel ferrite and cadmium oxide being nano-structure. NiFe2O4-CdO formula ratio is confirmed by X-ray fluorescence experiment. The sensitivity property of NiFe2O4-CdO nanoparticles for formaldehyde gas detection was studied at 50 °C. For testing the sensitivity of nanosensors, we used a laboratory 5 liters system with temperature and humidity control. This system equipped with a temperature control heater for heating sensors. Relationship between gas concentration (from 10 ppm to 200 ppm) and resistance change of nano sensor with the best response to formaldehyde was investigated, that this relationship was found linear.
[1] I. Polaert, S. Bastien, B. Legras, L. Estel & N. Braidy. "Dielectric and magnetic properties of NiFe2O4at 2.45GHz and heating capacity for potential uses under microwaves", Journal of Magnetism and Magnetic Materials, No. 731-739, pp. 731-739, 2015.
[2]ع. حیدری مقدم، ح. یوزباشی زاده، و. دشتی زاد و ع. کفلو، "سنتز ترکیبی بین فلزی نانوساختار Zr3Co با خاصیت جذب بالا به روش آلیاژسازی مکانیکی"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 3، ص 40-25، پاییز 1394.
[3] J.G. Webster, "Structural, magnetic and electric properties of multiferroic NiFe2O4-BaTiO3 composites", Journal of Magnetism and Magnetic Materials. 2018.
[4]J. Cai & D.C. Levy, Source Direction Detection based on Stationary Electronic Nose System. World Academy of Science, Engineering and Technology, Vol. 2: p. 717-721. 2008.
[5]G. Korotcenkov, Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications Vol. 1: Conventional Approaches. Springer Science & Business Media, 2013.
[6]H. R. Ebrahimi, et al., Synthesis, characterizationandgassensitivityinvestigation of Ni0.5Zn0.5Fe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, pp. 55-58. 2016.
[7]M. Xiaomin, Recognition of Toxic Gases Emission in Power Plant Based on Artificial Neural Network. Energy Procedia, Vol. 17: p. 1578-1584. 2012.
[8]S. Yunfen, et al., Study on Gas Sensor of Hybrid Organic Molecule and Sensitive Properties of Toxic Gas. Energy Procedia. Vol. 17: p. 1555-1562. 2012.
[9]N. Bârsan, Transduction in Semiconducting Metal Oxide Based Gas Sensors - Implications of the Conduction Mechanism. Procedia Engineering. Vol. 25: p. 100-103. 2011.
[10]Y. Wang & J.T.W. Yeow, A Review of Carbon Nanotubes-Based Gas Sensors. Journal of Sensors, p. 1-24. 2009
[11]A. Sutka, et al., Gas sensing properties of Zn-doped p-type nickel ferrite. Sensors and Actuators B: Chemical, No. 171-172: p. 354-360. 2012.
[12]A. Sutka, et al., Effects of Co ion addition and annealing conditionson nickel ferrite gas response. Sensors and Actuators B: Chemical, Vol. 192: p. 173-180. 2014.
[13]P. Mielle, Managing dynamic thermal exchanges in commercial semiconducting gas sensors. Sensors and Actuators, Vol. 34: p. 533-538. 1996.
[14]H. J. Kim & J. H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors and Actuators B: Chemical, Vol. 192: p. 607-627. 2014.
[15]G. Jimenez-Cadena, et al. "Gas sensors based on nanostructured materials." Analyst Vol. 132, No. 11, pp: 1083-1099. 2007.
[16]Y. Shimizu & E. Makoto, Basic Aspects and Challenges of Semiconductor Gas Sensors. MRS Bulletin, Vol. 24, No. 6, pp: 18-24. 1999.
[17]C. E. Simion & A. Tomescu-Stănoiu., Differences in the gas sensing properties readout with nand p-type mox materials. IEEE, p: 201-204. 2010.
[18] م. محمودی و م. کاوانلویی، "بهبود ریزساختار و خواص مغناطیسی فریتهای لیتیم تولید شده به روش حالت جامد بوسیله افزودنی نانوسیلیکا"، فصلنامه علمی-پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 3، 199-204، 1394.
[19]R. C. Singh, M. P. Singh & H. S. Virk, Applications of Nanostructured Materials as Gas Sensors. Solid State Phenomena, Vol. 201, p: 131-158. 2013.
[20]I. E. Gracheva, et al. "Investigations of nanocomposite magnetic materials based on the oxides of iron, nickel, cobalt and silicon dioxide." Journal of Physics and Chemistry of Solids, Vol. 74, No. 5, pp: 656-663. 2013.
[21]T. Sathitwitayakul, et al. "The gas sensing properties of some complex metal oxides prepared by self-propagating high-temperature synthesis." Materials Letters, Vol. 75, pp: 36-38. 2012.
[22]L. A. Patil, et al., Nickel doped spray pyrolyzed nanostructured TiO2 thin films for LPG gas sensing. Sensorsand Actuators B: Chemical, Vol. 176, p: 514-521. 2013.
[23]A. Monshi, "Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD." World Journal of Nano Science and Engineering, Vol. 02, No. 03, pp: 154-160. 2012.
_||_