Fabrication of Ni-VC Nano composite powder from oxide reactants by mechanochemical method
Subject Areas :Seyed Amir Hossein Emami 1 , Seyed Kamal Hosseini 2 , Danial Davoodi 3
1 - استادیار، مرکزتحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، اصفهان، ایران
2 - Najafabad Branch, Islamic Azad University
3 - Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University
Keywords: Nano Composite, Nickel, vanadium carbide, Mechanochemical, mechanically induced self-sustaining,
Abstract :
This research aims to produce Ni-Vanadium Carbide composite nano powder, known as a hard metal, from oxide raw materials and magnesium as a reductant, using mechano-chemical method. With regard to the adiabatic temperature (T=3964 K), this reaction is a mechanically induced Self-sustaining (MSR) type. Raw materials were mixed according to stoichiometry reaction with a ratio of (1:1:6:2) for Nickel oxide, Vanadium oxide, Magnesium and graphite respectively. Milling was carried out in a planetary ball mill with a powder to ball ratio of 1:20 under argon gas atmosphere. After 40min of milling, combustion occurred out in the mill chamber. With regard to the results of X-ray difraction after the combustion, the intended products; that are, Nickel, Vanadium Carbide and Magnesium Oxide which is by-product of the reaction, were completely produced. HCl with a concentration of 9% was used to remove the magnesium oxide phase. The crystallite size and lattice strain were calculated using Williamson-Hall method, and the crystallite size and lattice strain of Ni and Vanadium Carbide were obtained 40nm, 0.00595, 54nm, 0.00615, respectively.
[1] Q. Xu, J. Zhao, X. Ai, W. Qin, D. Wang & W. Huang,“Effect of Mo2C/(Mo2C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials”, Journal of Alloys and Compounds, Vol. 649, pp. 885-890, 2015.
[2] X. Chen, J. Xu & Q. Xiao, “Cutting performance and wear characteristics of Ti (C, N)-based cermet tool in machining hardened steel”, International Journal of Refractory Metals and Hard Materials, Vol. 52, pp. 143-150, 2015.
[3] S. Zhou, C. Luo, XX. Wu, L. Zhu & J. Tan, “Preparation of Ni–Mo–C/Ti(C,N) coated powders and its influence on the microstructure and mechanical properties of Ti(C,N)-based cermets”, Ceramics International, Vol. 41, pp. 9259- 9264, 2015.
[4] J. Xu, B. Zou, S. Zhao, Y. Hui, W. Huang, X. Zhou, Y. Wang, X. Cai & X. Cao, “Fabrication and properties of ZrC–ZrB2/Ni cermet coatings on a magnesium alloy by atmospheric plasma spraying of SHS powders”, Ceramics International, Vol. 40, pp. 15537-15544, 2014.
[5] K. Mandel, M. Radajewski & L. Krüger, “Strain-rate dependence of the compressive strength of WC–Co hard metals”, Materials Science and Engineering: A, Vol. 612, pp. 115-122, 2014.
[6] S. Sinan Akkaya, E. Sireli, B. Alkan, M. Kursat Kazmanli & M. Ürgen, “Effect of cathodic arc plasma treatment on the properties of WC–Co based hard metals”, Surface and Coatings Technology, Vol. 206, pp. 1759-1764, 2014.
[7] I. Sugiyama, Y. Mizumukai, T. Taniuchi, K. Okada, F. Shirase, T. Tanase, Y. Ikuhara & T. Yamamoto, “Three-dimensional morphology of (W, V) Cx in VC-doped WC–Co hard metals”, Scripta Materialia, Vol. 69, No. 6, pp. 473-476.
[8] S. Norgren, J. García, A. Blomqvist & L. Yin, “Trends in the P/M hard metal industry”, International Journal of Refractory Metals and Hard Materials, Vol. 48, pp. 31-45, 2015.
[9] M. D. Sacks, C. A. Wang, Z. H. Yang & A. Jain, “Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors”, Journal Materials Science, Vol. 60, pp. 75-66, 2004.
[10] X. G. Wang, J. X. Liu, Y. M. Kan & G. J. Zhang, “Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M =V, Nb, and Ta) additions”, Journal of the European Ceramic Society, Vol. 32, pp. 1795-1802, 2012.
[11] J. Zhihong, L. Ye, T. Xueyu, H. Li, W. Qiu, T. Cai, Y. Jiang & T. Zhao,“Synthesis of ordered mesoporous ZrC/C nanocomposite via magnesiothermic reduction at low temperature”, Materials Letters, Vol. 71, pp. 88-90, 2012.
[12] D. Davoodi, S. A. Hassanzadeh-Tabrizi, A. H. Emami & S. Salahshour, “A low temperature mechanochemical synthesis of nanostructured ZrC powder by a magnesiothermic reaction”, Ceramics International, Vol. 41, pp. 8397- 8401, 2015.
[13] C. Suryanarayana, “Synthesis of nanocomposites by mechanical alloyingˮ, Journal of Alloys and Compounds, Vol. 509, pp. 229-234, 2011.
[14] C. Suryanarayana, “Mechanical alloying and millingˮ, Progress Materials Science, No. 46, pp. 1-184, 2001.
[15] P. Balaz, “Mechanochemistry in Nanoscience and Minerals Engineering”, 1st ed. Springer Berlin, Heidelberg, Germany, 2008.
[16] L. Takacs, “Self-sustaining reactions induced by ball milling: an overview”, International Journal SHS, No. 18, pp. 276-282, 2009.
[17] G. K. Whlliamson & W. H. Hall, “X-ray broadening from field aluminium and wolfram”, Acta Metallurgica, Vol. 1. pp. 22-31, 1953.
[18] O. Kubaschewski, C. B. Alcock & P. J. Spencer, “Materials Thermochemistry”, Pergamon Press, Oxford, 1993.
[19] S. A. Hassanzadeh-Tabrizi, D. Davoodi, A. A. Beykzadeh & A. Chami, “Fast synthesis of VC and V2C nanopowders by mechanochemical combustion method”, International Journal of Refractory Metals and Hard Materials, Vol. 51, pp. 1-5, 2015.
[20] O. Torabi, R. Ebrahimi-Kahrizsangi, M. H. Golabgir, H. Tajizadegan & A. Jamshidi, “Reaction chemistry in the Mg–B2O3–MoO3 system reactive mixtures”, International Journal of Refractory Metals and Hard Materials, Vol. 48, pp. 102-107, 2014.
[21] O. Torabi, M. H. Golabgir, H. Tajizadegan & H. Torabi, “A study on mechanochemical behavior of MoO3–Mg–C to synthesize molybdenum carbide”, International Journal of Refractory Metals and Hard Materials, Vol. 47, pp. 18-24, 2014.
[22] ع. زلفی گسمونی، ع. سعیدی و س. ا. ح. امامی، "بررسی تاثیر همزمان کربن و روی بر فرآیند احیای مکانوشیمیایی اکسید مس"، فرآیندهای نوین در مهندسی مواد، سال 9، شماره 4، 1394.
[23] د. داودی، س. ا. ح. امامی و ع. سعیدی، "تولید و بررسی خواص مکانیکی پودر نانوکامپوزیت آلومینیوم 7014/آلومینا به روش آلیاژسازی مکانیکی"، فرآیندهای نوین در مهندسی مواد، سال 9، شماره 4، 1394.
_||_