Investigating the effect of nickel particle size and green density on the properties of NiAl-TiB2-TiC composite produced by combustion synthesis
Subject Areas :Mandana Adeli 1 , Rasoul Abdollahpour 2 , Mansour Soltanieh 3
1 - School of Metallurgy and Materials Engineering, Iran university of Science and Technology, Tehran, iran
2 - School of Metallurgy and Materials Eng., IUST, Tehran, Iran.
3 - School of Metallurgy and Materials Eng., IUST
Keywords: Combustion Synthesis, Intermetallic Matrix Composite, NiAl-TiB2-TiC composite, Exothermic mixture,
Abstract :
In this study, the effect of nickel particle size and green density on the formed phases, ignition time, and porosity distribution in NiAl-TiB2-TiC composite produced by combustion synthesis method was investigated. For this purpose, reactive powders were weighed and mixed to form a mixture of Ni + Al + x (3Ti + B4C). The green mixture was compressed in the form of a cylinder. The samples were synthesized using an induction furnace which the sample with a constant heating rate. The reaction was ignited in a quartz tube under a flow of argon gas. The microstructure of the products was examined using Scanning Electron Microscopy (SEM), and the phases were determined using X-ray diffraction (XRD). The amount of open, closed and total porosity was measured using Archimedes method, and the distribution of porosity was analyzed by using image analysis software. The results showed that by decreasing the average particle size of nickel from 87µm to 3µm, due to increase in contact surfaces, there was a decrease in ignition time of the samples, and more intensive reactions were encountered. Using finer nickel resulted in a ca. 10% decrease in the porosity of products. The minimum ignition time was obtained at green density of 85%. Increase in the relative density of green sample reduced the amount of secondary open pores; the porosity of the samples with a relative density of 65% and 95% was 58.8% and 26.9% after synthesis, respectively.
[1] G. Sauthoff, “Titanium aluminides and related phasesˮ, Intermetallics, Wiley GmbH, pp. 14-38, 2007.
[2] E. Aitken & J. Westbrook, “Intermetallic compounds”, Wiley, New York, pp. 491-515, 1967.
[3] K. Morsi, “Review: reaction synthesis processing of Ni-Al intermetallic materials”, Material Science and Engineering A, Vol. 299. pp. 1-15, 2001.
[4] Michalaski, J. jaroszewich, M. Rosinski & D. Siemiaszko, “NiAl-Al2O3 composite produced by pulse plasma sintering with the participation of the SHS reaction”, Intermetallics, Vol. 14, pp. 603-606, 2006.
[5] Y. Terada, K. Ohkubu, T. Muhri & T. Suzuki, “Thermal conductivity of intermetallic compounds with metallic bonding”, Materials Transactions, Vol 43, pp. 3167-3176, 2002.
[6] S. Bhaumic, C. Divakar, L. Rangaraj & A. Singh, “Reaction sintering of NiAl and TiB2-NiAl composite under pressure”, Material Science and Engineering A, Vol. 257, pp. 341-348, 1998.
[7] C. S. Bautisca, A. Ferriere, G. Rodriguesz, M. Lopez- Almodovar, A. Barba, C. Sierra & A. Vazquez, “Intermetallic coating elaborated by a solar assisted SHS precess”, Intermetallics, Vol. 14, pp. 1270-1275, 2006
[8] O. Ozdemir, S. Zeytin & C. Bindal, “Tribological properties of NiAl produced by pressure-assisted combustion Synthesis”, Wear, Vol. 256, pp. 979-985, 2008.
[9] L. Duarte, C. Leinenbach, U. Klotz, M. Marker, K. Richter & J. Loffler, “Experimental study of the FeAl-NiAl-TiAl section”, Intermetallics, Vol. 23, pp. 80-90, 2012.
[10] ع. اسمعیلی علیآبادی و ع. سعیدی، "تولید کامپوزیت TiC در زمینه آلومیناید نیکل بهروش سنتز احتراقی انفجاری"، فصلنامه فرآیندهای نوین در مهندسی مواد، سال 2، شماره 6، صفحه 8-1، پاییز 1387.
[11] C. M. Ward-Close, R. Minor & P. J. Doorbar “Intermetallic matrix composites - a review”, Intermetallics, Vol. 4, pp. 217-229, 1996.
[12] م. بیهقی، ع. کیانی رشید، م. کاشفی تربتی، ج. وحدتی خاکی و ا. یونسون، "بررسی تأثیر فعالسازی مکانیکی و سرعت گرمایش بر تشکیل کامپوزیت نانوساختار NiAl-Al2O3 بهروش سنتز احتراقی"، فصلنامه فرآیندهای نوین در مهندسی مواد، سال 11، شماره 2، صفحه 25-1، تابستان 1396.
[13] J. J. Moore & H. J. Feng, “Combustion synthesis of advanced materials: Part 1. Reaction parameters”, Material Science, Vol. 39. pp. 243-273, 1995.
[14] W. Wang, L. Zhang & X. Zhang, “Microstructure, densification and mechanical properties of TiB2-TiC-NiAl ceramic-based composite”, Key Engineering Materials, Vol. 680. pp. 152-157, 2016.
[15] C. Hong-zhi, M. Li, C. Li-Li, T. Fang-lei & C. Ning, “Effect of NiAl content on phase and microstructure of TiC-TiB2-NiAl composites fabricated by reaction synthesis”, Transactions of Nonferrous Metals Society of China, Vol. 24, pp. 346-353, 2014.
[16] N. Wei, H. Cui, J. Wu & J. Wang, “Effect of forming conditions and TiC-TiB2 contents on the microstructure of self-propagating high-temperature synthesized NiAl-TiC-TiB2 compositesˮ, Acta Metall, Vol. 28. pp. 39-47, 2015.
[17] N. Wei, H. Cui, L. Ma, X. Song, W. Liu & N. Hou, “Porous TiC-TiB2-NiAl composite and effect of NiAl contents on pore structure and microstructure”, Powder Metallurgy, Vol. 58. No. 4, pp. 273-280, 2015.
[18] C. L. Yeh & W. Y. Sung, “Combustion synthesis of Ni3Al intermetallics compound in self-propagating mode”, Journal of Alloy and Compounds. Vol. 384, pp. 181-191, 2004.
[19] H. P. Li & J. A. Sekhar, “The Influence of the size on micropyretic synthesis of NiAl intermetallic compounds”, Journal of Materials Research Society, Vol. 10, No. 10, pp. 2471-2480, 1995.
[20] C. L. Yeh & H. J. Wang, “A comparative study on combustion synthesis of Ta-Si compoundsˮ, Intermetallics, Vol. 15. pp. 1277-1284, 2007.
[21] N. Kanetake & M. Kobashi, “Innovative processing of porous and cellular materials by chemical reaction”, Scripta Material, Vol. 54. pp. 521-525, 2006.
[22] M. Kobashi & N. Kanetake, “A self-propagating foaming process of Porous Al-Ni intermetallics assisted by combustion reactionsˮ, Materials, Vol. 2, pp. 2360-2368, 2009.
_||_