Friction Stir Welding of Ultrafine-Grained Al 1050: Investigation of Pin Geometry, Welding Atmosphere Temperature and Welding Speeds on the Mechanical Properties
Subject Areas :Morteza Hosseini 1 * , Habib Danesh-Manesh 2
1 - Assistance professor, Department of mechanical Engineering, University of Hormozgan, Bandar Abbas,
Iran.
Assistance professor, Nanotechnology Research Center, University of Hormozgan, Bandar Abbas, Iran.
2 - Professor, Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran.
Keywords: Microhardness, Ultrafine grained Al 1050, Friction stir welding atmosphere temperature, Welding tool geometry, Uniaxial tensile test,
Abstract :
The application of ultrafine-grained or nanostructured aluminum is very interesting owing to its high strength to weight ratio. Welding of these materials is one of the main challenges. Regarding the potential of the solid-state friction stir welding in joining of nanostructured materials, in the current research different equipment and techniques like optical and scanning and transmitted electron microscopes, Vickers microhardness, and uniaxial tensile tests were employed to study the effect of major welding parameters on the bonding quality of friction stir welded ultrafine-grained Al 1050 alloy produced via accumulative roll-bonding (ARB) method. The studied parameters were rotation and traveling speeds, pin geometry as well as welding atmosphere temperature. The results show the microhardness enhancement of the weld zone by decreasing the rotation speed or increment of traveling speed due to lower heat generation within the stir zone. Investigation of the pin geometry depicts an insignificant impact of this variable on the weld tensile properties. Only in the case of a threaded pin, a slight enhancement in the tensile properties was achieved. Submerge or underwater welding could improve joint strength. However, the application of extremely cold water with respect to 25° C water shows a reverse effect and leads to severe weld quality degradation owing to defects formation (like internal channels and surface discontinuity).
[1] Y. Cao, S. Ni, X. Liao, M. Song & Y. Zhu, "Structural evolutions of metallic materials processed by severe plastic deformation", Materials Science and Engineering: R: Reports, vol. 133, pp. 1-59, 2018.
]2[ م. حیدری وینی و س. دانشمند، "بررسی مقاومت به خوردگی کامپوزیتهای Al-1060/Alumina ساختهشده به روش نورد تجمعی"، فرآیندهای نوین در مهندسی مواد، 10.30495/APME.2021.1929264.2052.
[3] I. Topic, H. W. Hoppel & M. Goken, "Friction stir welding of accumulative roll-bonded commercial-purity aluminium AA1050 and aluminium alloy AA6016", Materials Science and Engineering A, vol. 503, no. 1–2, pp. 163-166, 2009.
[4] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai & R. G. Hong, "Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process", Scripta Materialia, vol. 39, pp. 1221-1227, 1998.
[5] S. M. Ghalehbandi, M. Malaki & M. Gupta, "Accumulative Roll Bonding—A Review", Apllied Science, vol. 9, no. 17, pp. 3627, 2019.
[6] Y. Sun, H. Fujii, Y. Takada, N. Tsuji, K. Nakata & K. Nogi, "Effect of initial grain size on the joint properties of friction stir welded aluminum", Materials Science and Engineering A, vol. 527, no. 1–2, pp. 317-321, 2009.
[7] S. Heidarzadeh, R. Mironov, G. Kaibyshev, A. Çam, A. Simar, F. Gerlich, A. Khodabakhshi, D. P. Mostafaei, J. D. Field, A. Robson, A. Deschamps & P. J. Withers, "Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution", vol. 117, 100752, 2021.
[8] R. S. Mishra & Z. Y. Ma, "Friction stir welding and processing", Materials Science and Engineering R, vol. 50, pp. 1-78, 2005.
]9[ ا. ربیعی زاده، ا. افسری، ف. ارغوانی و ف. احمدی کیسمی، "اتصال همجنس و غیر همجنس آلیاژهای آلومینیوم 5754 و 6063 به روش جوشکاری اصطکاکی- اغتشاشی"، فرآیندهای نوین در مهندسی مواد، دوره 10، شماره 2، صفحه 95-85، تابستان 1395،
[10] M. J. Greitmann & P. Deimel, "Friction stir welding – innovative technology for joining aluminium components", Otto-Graf-Journal, vol. 16, pp. 185-192, 2005.
[11] M. Hosseini & H. Danesh Manesh, "Immersed friction stir welding of ultrafine grained accumulative roll-bonded Al alloy" Materials & Design, vol. 31, no. 10, pp. 4786-479, 2010.
[12] K. Wang, J. Wu, W.Wang, L. Zhou, Z. Lin, L.Kong, "Underwater friction stir welding of ultrafine grained 2017 aluminum alloy", Journal of Central South University, vol. 19, pp. 2081−2085, 2012.
[13] C. Y. Liu, B. Qu, P. Xue, Z. Y. Ma, K. Luo, M. Z. Ma & R. P. Liu, "Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding", Journal of Materials Science & Technology, vol. 34, no. 1, pp. 112-118, 2018.
[14] F. Leoni, L. Sandness, Ø. Grong & F. Berto, "Mechanical behavior of gas metal arc AA6082-T6 weldments", Procedia Structural Integrity, vol. 18, pp. 449-456, 2019.
[15] S. Mansourzadeh, M. Hosseini, E. Salahinejad & A. H. Yaghtin, "Cu-(B4C)p metal matrix composites processed by accumulative roll-bonding" Progress in Natural Science: Materials International, vol. 26, vo. 6, pp. 613-620, 2016.
[16] M. A. Wahid, P. Goel, Z. A. Khan, K. M. Agarwal & E. H. Khan, "Underwater Friction Stir Welding of AA6082-T6: Thermal Analysis", Advances in Engineering Materials, Lecture Notes in Mechanical Engineering. Springer, Singapore, pp 365-375, 2021.
[17] P. Podržaj, B. Jerman & D. Klobčar, "Welding defects at friction stir welding", Metallurgy, vol. 54, no. 2, pp. 387-389, 2015.
_||_