Investigating the Erosion Caused By Abrasive Particles in Voronoi Porous Structures Used in the Gas Flow Path
Subject Areas :
Akram Salehi
1
,
Ali Reza Kiani-Rashid
2
*
,
Masoud Golestanipour
3
1 - PhD Student, Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 - Professor, Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
3 - Assistant Professor, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Iran
Keywords: Erosion, Abrasive Particles, Foam, Voronoi Structure, Erosion Rate,
Abstract :
The aim of this study is investigating the erosion caused by abrasive particles in Voronoi metal foams. The foams under investigation in this study are made of aluminum alloy 7075 and are being used to reduce noise in the gas flow path. For the production of the foam samples, they were first designed using software methods in three different cell sizes of 5 ppi, 7 ppi and 10 ppi. Then the aluminum Voronoi foams were fabricated by additive manufacturing and investment casting methods. Erosion tests were performed with the help of air jet in the abrasive particles size of 180-220 microns and 280-320 microns, at a 90° angle with the surface. The results of erosion rate studies, profilometry and scanning electron microscopy showed that in the porous and bulk samples with an increase in abrasive particle size, the surface roughness increases, but in contrast to the bulk sample, the erosion rate in the porous samples decreases as the size of the abrasive particles increases. Furthermore, it was found that the erosion rate will increase for a particular abrasive particle size by reducing the metal foam cell sizes and increasing the surface-to-volume ratio.
[1] R. Tarodiya & A. Levy, "Surface erosion due to particle-surface interactions-A review", Powder Technology, vol. 387, pp. 527-559, 2021
[2] ح. کشاورزیان، م. جباری و م. سهیلی، "تأثیر پارامترهای دینامیکی و ناخالصی سیال در سایش پروانههای کمپرسورهای گریز از مرکز انتقال گاز با روشهای تجربی و تحلیلی"، مهندسی مکانیک مدرس، دوره 19، شماره 11، صفحه ۲۶۴۵-۲۶۵۱، 1398.
[3] K. Alagarraja, B. Vijaya Ramnath, A. Rajendra Prasad, E. Naveen & N. Ramanan, "Wear behaviour of foam and fiber based sandwich composite–A review", Materials Today: Proceedings, Vol. 46, no. 9, pp. 3919-3923, 2021.
[4] V. B. Nguyen, Q. B. Nguyen, Y. W. Zhang, C. Y. H. Lim & B. C. Khoo, "Effect of particle size on erosion characteristics", Wear, vol. 348-349, pp. 126-137, 2016.
[5] P. G. Ranjith, Y. Liu, J, Wei & X, Liu, "Effect of abrasive mass flow on the abrasive acceleration and erosion rates of abrasive gas jets", Rock Mechanics and Rock Engineering, vol. 52, no. 9, pp. 3085-3102, 2019.
[6] M. Patel, A. Kumar, B. Pardhi & M. Pal, "Abrasive, erosive and corrosive wear in slurry pumps–A review", International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 3. pp. 2188-2195, 2020.
[7] م. محمدی سراسیا، ح. عجم و ا. مولودی، "بررسی تأثیر قرار دادن محیط متخلخل بر عملکرد رگلاتورهای تقلیل فشار گاز با رویکرد کاهش نوفه جریانی"، مهندسی مکانیک مدرس، دوره 21، شماره 7، صفحه 429-439، 1400.
[8] C. Xu & Y. Mao, "Passive control of centrifugal fan noise by employing open-cell metal foam", Applied Acoustics, vol. 103, pp. 10-19, 2016.
[9] L. P. Lefebvre, J. Banhart & D. C. Dunand, "Porous metals and metallic foams: current status and recent developments", Advanced Engineering Materials, vol. 10, no. 9, pp. 775-787, 2008.
[10] D. Chen, S. Kitipornchai & J. Yang, "Dynamic response and energy absorption of functionally graded porous structures", Materials & Design, vol. 140, pp. 473-487, 2018.
[11] S. E. Al-Lubani & A. I. Ateyat. "Double aging of heat-treated aluminum alloy of (7075) and (6061) to increase the hardness number", In Advanced Problems in Mechanics: Proceedings of the XLVII International Summer School-Conference “Advanced Problems in Mechanics”, June 24-29, 2019, St. Petersburg, Russia. 2020. Springer.
[12] N. Mahathaninwong, T. Plookphol, J. Wannasin & S. Wisutmethangoon, "T6 heat treatment of rheocasting 7075 Al alloy", Materials Science and Engineering: A, vol. 532, pp. 91-99, 2012.
[13] S. Pour-Ali & M. Etminanfar, "Metallurgical failure analysis of an axial gas flow valve: the erosion of valve cage closures", Journal of Failure Analysis and Prevention, vol. 21, no. 4, pp. 1154-1163, 2021.
[14] D. Han & T. Shen, "Research on Anti-erosion Performance and Application of Metal Foam", Academic Journal of Materials & Chemistry, vol. 4, no. 1, doi: 10.25236/AJMC.2023.040101. 2023.
[15] Y. I. Oka, K. Okamura & T. Yoshida, "Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation", Wear, vol. 259, no. 1-6, pp. 95-101, 2005.
[16] X. I. Zou, Y. Hong & X. H. Chen, "Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment", Transactions of Nonferrous Metals Society of China, vol. 27, no. 10, pp. 2146-2155, 2017.
[17] م. قبادی و م. ا. آریانا، "بررسی پدیده سایش در خطوط لوله گاز توسط قطرات سیال و ذرات شن"، در اولین همایش بینالمللی افقهای نوین در علوم پایه و فنی و مهندسی. 1395.
[18] T. S. Khan & M. S. "Al-Shehhi, Review of black powder in gas pipelines–An industrial perspective", Journal of Natural Gas Science and Engineering, vol. 25, pp. 66-76, 2015.
[19] A. International, "ASTM G76-04: Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets", ASTM International, 2004.
[20] Chowdhury, M.A., et al., "Experimental analysis of aluminum alloy under solid particle erosion process", Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 230, on, 12. pp. 1516-1541, 2016.
[21] A. C. Kak & M. Slaney, "Principles of computerized tomographic imaging", Classics in Applied Mathematics, 2001.
[22] K. Tong, Y. Kong, L. Yang & X. Du, "Boost of photodegradation performances by adoption of semi-transparent open cell foam substrates via numerical simulation", Chemical Engineering Journal, vol. 427, pp. 130920, 2022.
[23] A. Misra & I. Finnie, "On the size effect in abrasive and erosive wear", Wear, vol. 65, no. 3, pp. 359-373, 1981.
[24] H. Eaton & R. Novak, "Particulate erosion of plasma-sprayed porous ceramic", Surface and Coatings Technology, vol. 30, no. 1, pp. 41-50, 1987.
[25] A. A. Erdoğan, E. Feyzullahoğlu, S. Fidan & T. Sinmazcelik, "Investigation of erosive wear behaviors of AA6082-T6 aluminum alloy", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 234, no. 3, pp. 520-530, 2020.
[26] P. C. Okonkwo, M. H. Sliem, M. H. Sk, R. Abdul Shakoor, M. A.Mohamed, A. M. Abdullah & R. Kahraman, "Erosion behavior of API X120 Steel: Effect of particle speed and impact angle", Coatings, vol. 8, no. 10, pp. 343, 2018.
[27] A. Harsha, U. Tewari & B. Venkatraman, "Solid particle erosion behaviour of various polyaryletherketone composites", Wear, vol. 254, no. 7-8, pp. 693-712, 2003.