Theoretical and experimental study of Imidazolium Ionic Liquid Effect on the Corrosion Inhibition of 316-Stainless Steel, Using Electrochemical Test Methods and Quantum Mechanics Theories
Subject Areas :Reza Safari 1 * , ALI EHSANI 2 , Hamid Ebrahimi 3
1 - 2Department of Chemistry (Physical Chemistry group), Faculty of science, University of Qom, Qom, Iran
2 - Department of Chemistry (Physical Chemistry group), Faculty of science, University of Qom, Qom, Iran
3 - for Advanced Engineering Research, Majlesi Branch, Islamic Azad University, Isfahan, Iran
Keywords: "Corrosion inhibitor, "surface adsorption, "stainless steel, "impedance, "AIM theory,
Abstract :
In this study, the impact of )1-Buthyl-3-methyl imidazoloum hexa fluorophosphatesas( a new inhibitor on the corrosion of stainless steel 316L (SS) in HCl solution was investigated by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Also, the absorption of inhibitor onto the SS surface followed the Langmuir absorption model with the free energy of absorption ΔG0adsof -8.57 kJ mol-1. In addition, using density function theory (DFT) and atoms-in-molecule (AIM) theories, introduced by Richard Bader, which is a generalization of quantum theory to proper nano-size and molecular systems, the electronic organic-structure and local charge/energy transfer in the imidazole molecular system (as a organic-corrosion inhibitor element) are studied. In the same vein, the atomic electronic properties (such as electron density and its Laplacian), and the HOMO–LUMO gap (HLG) of this organic-molecular system are calculated. The results of the investigation show that proposed compound, as a commodious/economical -green inhibitor, has excellent inhibiting properties for SS corrosion in acidic solution. Furthermore, quantum mechanical results show that nitrogen atoms play domain role in intra-molecular charge and energy transfer (and thus electrochemical mechanism) in this inhibitor.
[1] R. Solmaz, G. Kardas, B. Yazıcı & M. Erbil, Prot. Met, Vol. 41, pp. 581-585, 2005.
[2] G. Kardas, Mater. Sci., Vol. 41, pp. 337-343, 2005.
[3] م. فلاحی، ا. دانایی و ب. لطفی، "بررسی رفتار خوردگی پوشش اکسید سریم بر روی آلیاژ آلومینیوم -7075-T6"، فصلنامه علمی- پژوهشی فرآیندهای نوین در مهندسی مواد مجلسی، دوره ششم، شماره چهارم، صفحه 39، زمستان 1391.
[4] Ostovari, S. M. Hoseinieh, M. Peikari, S. R. Shadizadeh & S. J. Hashemi, Corros. Sci., Vol. 51, pp. 1935-1949, 2009.
[5] Corrosion Engineering, M. G. Fontana, McGraw- Hill, New York, 1989.
[6] ک. طاهرخانی، خ. محمدی و ح. قلی زاده، "بررسی خواص سطحی و سایشی پوشش نیتریدی ایجاد شده بر روی فولاد ابزار گرم کار H11 در روش نیتروژن دهی پلاسمایی پالسی"، فصلنامه علمی- پژوهشی فرآیندهای نوین در مهندسی مواد مجلسی، دوره دهم، شماره سوم، صفحه 23، پائیز 1395.
[7] ا. فتاح الحسینی و آ. ایمان طلب، "بررسی رفتار الکتروشیمیایی فولاد زنگنزن 304 کم کربن در یک محلول قلیاییبا روش موت-شاتکی و طیفسنجی امپدانس الکتروشیمیایی"، فصلنامه علمی- پژوهشی فرآیندهای نوین در مهندسی مواد مجلسی، دوره هشتم، شماره دوم، صفحه 75، تابستان 1393.
[8] Ahamad & M. A. Quraishi, Corros. Sci., Vol. 51, pp. 2006-2013, 2009.
[9] Q. B. Zhang & Y. X. Hua, Electrochim. Acta, Vol. 54, pp. 1881-1887, 2009.
[10] W. Li, Q. He, C. Pei & B. Hou, Electrochim, Acta., Vol. 52, pp. 6386-6394, 2007.
[11] Ehsani, M. G. Mahjani, R. Moshrefi & H. Mostaanzadeh, J. Shabani Shayeh, RSC Advanc., Vol. 4, pp. 20031-20037, 2014.
[12] E. Kowsari, S. Y. Arman, M. H. Shahini, H. Zandi, A. Ehsani, R. Naderi, A. PourghasemiHanza & M. Mehdipour, Corros. Sci., Vol. 112, pp. 73-85, 2016.
[13] Pourghasemi Hanza, R. Naderi, E. Kowsari & M. Sayebani, Corros. Sci., Vol. 107, pp. 96–106, 2016.
[14] M. Nuri Rahuma, F. Mahamed Al Sonosy & A. Mohamed Al Frjany, Americ. J. Appli. Chem., Vol. 2, pp. 1-5, 2014.
[15] S. A. Umoren & B. Obot, Surf. Rev., Lett., Vol. 15 pp. 277, 2008.
[16] M. A. Deyab & S. S. Abd El Rehim, Int. J. Electrochem. Sci., Vol. 8, pp. 12613–12627, 2013.
[17] N. A. Abdel Ghanyl, A. E. El Shenawy & W. A. M. Hussien, Mod. Applie. Sci., Vol. 5, pp. 19, 2011.
[18] R. R. Moreira, T. F. Soares & J. Ribeiro, Advanc. Chem. Engineer. Sci., Vol. 4, pp. 503-514, 2014.
[19] B. Szubzda1, A. Antończak, P. Kozioł, L. Lazarek, B. Stępak, K. Lecka, A. Szmaja & M. zimek, IOP Conf. Ser, Mater. Sci. Engineer., Vol. 113, pp. 012017-8, 2016.
[20] E. M. Westin, P. Laakso, J. Oliver1 & R. Penttila, Presented at ICALEO, 2009.
[21] Ehsani, M. G. Mahjani, M. Jafarian & A. Naeemy, Electrochim. Acta, Vol. 71, pp. 128-133, 2012.
[22] Ehsani, M. G. Mahjani, M. Jafarian & A. Naeemy, Prog. Org. Coat., Vol. 69, pp. 510-516, 2010.
[23] M. G. Mahjani, R. Moshrefi, A. Ehsani & M. Jafarian, Anti corrosion method and material, Vol. 58, pp. 250-257, 2011.
[24] Ehsani, M. G. Mahjani, M. Hosseini, R. Safari, R. Moshrefi & H. M. Shiri, J. Colloid, Interfa. Sci., Vol. 490, pp. 444-451, 2017.
[25] Chemistry of Heterocyclic Compounds: Imidazole and Its Derivatives (A Series of Monographs), C. Hofmann, Wiley, U.K, 2008.
[26] Electrochemical Methods: Fundamentals and Applications, A. J. Bard, L. R. Faulkner, Wiley, New York, 2001.
[27] Physical Chemistry, I. N. Levine, McGraw-Hill, New York, 2000.
[28] Atoms in Molecules, Popelier, P., Pearson Education, U.K., 2000.
[29] The Quantum Theory of Atoms in Molecules, C. F. Matta, R. J. Boyd, Wiley-VCH, Weinheim, 2007.
[30] Atoms in Molecules, R. F. W. Bader, Oxford University, U.K., 1995.
[31] Quantum Biochemistry, C. F. Matta, R. J. Boyd, Wiley-VCH, Weinheim, 2010.
[32] H. Sabzyan & R. Safari, Europhys. Lett., Vol. 99, pp. 67005-9, 2012.
[33] Popova, M. Christov & A. Zwetanova, Corros. Sci., Vol. 49, pp. 2131–2143, 2007.
[34] S. A. M. Refaey, F. Taha & A. M. Abd El Malak, Int. J. Electrochem. Sci., Vol. 1, pp. 80-91, 2006.
[35] M. Nuri Rahuma, F. M. Al Sonosy & A. M. Al Frjany, Americ. J. Appl. Chem., Vol. 2, pp. 1-5, 2014.
[36] P. Selvakumar, B. Balanaga Karthik & C. Thangavelu, Res. J. Chem. Scien., Vol. 3, pp. 87-95, 2013.
[37] R. R. Moreira, T. F. Soares & J. Ribeiro, Advanc. Chem. Engin. Sci., Vol. 4, pp. 503-514, 2014.
[38] E. Barmatov & T. L. Hughes, Corrs. Sci., Vol. 123, pp. 170, 2017.
[39] M. Szala, K. Beer Lech & M. Walczak, Engineer. Failure, Analy., Vol. 77, pp. 31-33, 2017.
[40] J. H. oon Ha, J. H. Cho, J. H. Kim, B. W. Cho & S. H. Oh, J. Power Sourc., Vol. 355, pp. 90-97, 2017.
[41] N. Solomon & I. Solomon, Engineer. Failure Analy., Vol. 79, pp. 865-875, 2017.
[42] Y. C. Wang, T. C. Lee, J. Y. Lin, J. K. Chang & C. M. Tseng, Corros. Sci., Vol. 78, pp. 81–88, 2014.
[43] X. Zheng, S. H. Zhang, W. Li, M. Gong & L. Yin, Corros. Sci., Vol. 95, pp. 168–179, 2015.
[44] S. M. Hosseinalipoura, A. Ershad-langroudi, A. Nemati Hayatia & A. M. Nabizade Haghighi, Pro. Org. Coat., Vol. 67, pp. 371-374, 2010.
[45] N. S. Patel, S. Jauhari & G. N. Mehta, Acta, Chim. Slov., Vol. 57, pp. 297-304, 2010.
[46] Y. Li, R. G, Hu, J. R., Wang, Y. X. Huang & C. J. Lin, Electrochimica, Acta, Vol. 54, pp. 7134-7140, 2009.
_||_