The effect of surface mechanical attrition treatment time on corrosion behavior of pure Copper
Subject Areas :بهروز شایق بروجنی 1 * , احسان اکبری خراجی 2
1 - عضو هیات علمی/ دانشکده فنی و مهندسی، دانشگاه شهرکرد
2 - دانشکده فنی و مهندسی، دانشگاه شهرکرد
Keywords:
Abstract :
[1] L. Wagner, “Mechanical surface treatments on titanium, aluminum and magnesium alloys”, Materials Science Engineering, Vol. A263, pp. 210-216, 1999.
[2] K. Dai & L. Shaw, “Comparison between shot peening and surface Nano crystallization and hardening processes”, Materials Science Engineering, Vol. A463, pp. 46-53, 2007.
[3] N. R. Tao, J. Lu, b & K. Lu, “Surface Nano crystallization by Surface Mechanical Attrition Treatment”, Materials Science Forum, Vol. 579, pp. 91-108, 2008.
[4] N. R. Tao, Z. B. Wang, W. P. Tong, M. L. Sui, J. Lu & K. Lu, “An investigation of surface Nano crystallization mechanism in Fe induced by surface mechanical attrition treatment”, Acta Materialia, Vol. 50, pp. 4603–4616, 2002.
[5] Y. S. Zhang, Z. Han, K. Wang & K. Lu, “Friction and wear behaviors of Nano crystalline surface layer of pure copper”, Wear, Vol. 260, pp.942–948, 2006.
[6] K. Lu & J. Lu, “Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment”, Materials Science and Engineering, Vol. A375–377, pp. 38–45, 2004.
[7] K. Wang, N. R. Tao, G. Liu, J. Lu & K. Lu, “Plastic strain-induced grain refinement at the nanometer scale in copper”, Acta Materialia, Vol. 54, pp. 5281–5291, 2006.
[8] Y. M. Wang, K. Wang, D. Pan, K. Lu, K. J. Hemker & E. Ma, “Microsample tensile testing of nanocrystalline copper”, Scripta Materialia, Vol. 48, pp. 1581–1586, 2003.
[9] C. X. Huang, K. Wang, S. D. Wu, Z. F. Zhang, G. Y. Li & S. X. Li, “Deformation twinning in polycrystalline copper at room temperature and low strain rate”, Acta Materialia, Vol. 54, pp. 655–665, 2006.
[10] L. Huang, J. Lu & M. Troyon, “Nano-mechanical properties of nanostructured titanium prepared by SMAT”, Surface & Coatings Technology, Vol. 201, pp. 208–213, 2006.
[11] X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu & K. Lu, “Strain-induced grain refinement of cobalt during surface mechanical attrition treatment”, Acta Materialia, Vol. 53, pp. 681–691, 2005.
[12] H. Yun-wei, D. Bo, Z. Cheng, J. Yi-rning & L. Jin, “Effect of Surface Mechanical Attrition Treatment on Corrosion Behavior of 316 Stainless Steel”, Journal of iron and steel research international, Vol. 16, pp. 68-72, 2009.
[13] H. W. Zhang, Z. K. Hei, G. Liu, J. Lu & K. Lu, “Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment”, Acta Materialia, Vol. 51, pp. 1871–1881, 2003.
[14] K. D. Ralston, D. Fabijanic & N. Birbilis, “Effect of grain size on corrosion of high purity aluminium”, Electrochimica Acta, Vol. 56, pp. 1729-1736, 2011.
[15] T. Balusamy, S. Kumar & T. S. N. Narayanan, “Effect of surface nanocrystallization on the corrosion behavior of AISI 409 stainless steel”, Corrosion Science, Vol. 52, pp. 3826–3834, 2010.
[16] L. Yurong, L. Wanming, W. Yinghui, H. Lifeng & D. Huayun, “Treated Surface Layer with Nanocrystallines on Cu-10Ni Alloy”,Corrosion science and protection technology, Vol. 24, pp. 397- 400, 2012.
[17] S. Kumar, S. G. S. Raman, T. S. N. S. Narayanan & R. Gnanamoorthy, “Influence of counterbody material on fretting wear behaviour of surface mechanical attrition treated Ti–6Al–4V”, Tribology International, Vol. 57, pp. 107–114, 2013.
[18] S. Jelliti, C. Richard, D. Retraint, T. Roland, M. Chemkhi & C. Demangel, “Effect of surface nanocrystallization on the corrosion behavior of Ti–6Al–4V titanium alloy”, Surface & Coatings Technology, Vol. 224, pp. 82–87, 2013.
[19] Monshi, M. R. Foroughi & M. R. Monshi, “Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD”, World Journal of Nano Science and Engineering, Vol. 2, pp. 154-160, 2012.
[20] ASTM G3-89R99: Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing.
[21] F. kargar, M. laleh, T. shahrabi & A. S. rouhaghdam, “effect of treatment time on characterization and properties of nanocrystalline surface layer in copper induced by surface mechanical attrition treatment”, Bulletin Material Science, Vol. 37, pp. 1087–1094, 2014.
[22] W. Li, L. Hu, S. Zhang & B. Hou, “Effect of two fungicides on the corrosion resistance of copper in 3.5% NaCl solution under various conditions”, corrosion science, Vol. 53, pp. 735-745, 2011.
[23] H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov & S. Hashimoto, “Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing”, corrosion science, Vol. 50, pp. 1215-1220, 2008.
[24] C. Criado, P. Gala´n-Montenegro, P. Vela´squez & J.R. Ramos-Barrado, “Diffusion with general boundary conditions in electrochemical systems”, Journal of Electroanalytical Chemistry, Vol. 488, pp. 59–63, 2000.