The effects of deposition variable on the pulse electrodeposition FeNi-WC nanostructure composite
Subject Areas :آمنه وحیدیان 1 * , علی سعیدی 2 , محمد علی گلعذار 3
1 - دانشگاه صنعتی اصفهان
2 - دانشگاه صنعتی اصفهان
3 - دانشگاه صنعتی اصفهان
Keywords: Composite, Pulse Electrodeposition, Iron- Nickel, Current Density,
Abstract :
The increasing demand for magnetic materials in the industry has led to the production of Fe-Ni composite magnetic alloys with ceramic particles. In this research, FeNi-WC nanostructure composite was produced using pulse electrodeposition. The effects of pH, current density and the amount of reinforcement on composition and morphology of products were examined, because morphology and chemical composition and structure of samples were studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The result showed an increasing pH, increased slightly nickel and decreased iron, and spherical morphology led to change star one. Due to importance of energy saving, effects of variables on the efficiency parameters such as the current efficiency and specific energy consumption were studied. By increasing pH, current efficiency was increased and specific energy consumption was reduced. When the current density increased, current efficiency was reduced and specific energy consumption was increased. In general, more current density (100 mA/cm2) and lower reinforcement (5 g/L) was observed more uniform morphology.
[1] N. park, D. Lee, I. Ko, J. Yoon & I. Shon, “Rapid Consolidation of Nanocrystalline Al2O3 Reinforced Ni-Fe Composite from Mechanically Alloyed Powders by High Frequency Induction Heated Sintering”, Cramics International, Vol. 35, pp. 3147-3151, 2009.
[2] R. Starosta & A. Zielinski, “Effect of Chemical Composition on Corrosion and Wear Behaviour of the Composite Ni-Fe-Al2O3 Coatings”, Journal of Material Processing Technology, Vol. 157-158, pp. 434-441, 2009.
[3] X. Li & Z. Li, “Nanosized si3n4 Reinforced NiFe Nanocomposites by Electroplating”, Material Science Engineering, Vol. 358A, pp. 107-113, 2003.
[4] H. Ataee-Esfahani, M. R. Vaezi, L. Nikzad, B. Yazdani & S. K. Sadrnezhaad, “Influence of SiC Nanoparticles and Saccharin on The Structure and Properties of Electrodeposited Ni–Fe/SiC Nanocomposite Coatings”, Journal of Alloys and Compounds, Vol. 484, pp. 540–544, 2009.
[5] Ch. R. Raub & A. Knodler, “The Electrodeposition of Gold by Pulse Plating”, Gold Bulletin, Vol. 10, No. 2, pp. 38-44, 1977.
[6] M. S. Chandrasekar, M. Pushpavanam, “Pulse and pulse reverse plating—Conceptual, advantages and applications”, Electrochimica Acta, Vol. 53, pp. 3313–3322, 2008.
[7] Ch. R. Raub & A. Knodler, “The Electrodeposition of Gold by Pulse Plating”, Gold Bulletin, Vol. 10, No. 2, pp. 38-44. 1977.
[8] Balasubramanian, D. S. Srikumar, G. Raja, G. Saravanan & S. Mohan, “Effect of Pulse Parameter on Pulsed Electrodeposition of Copper on Stainless Steel”, Surface Engineering. Vol. 25, No. 5, pp. 389-392, 2009.
[9] M. Saitou, S. Teruya & S. M. Asadul Hossain, “Temperature-Dependence of Deposition Rate and Current Efficiency in Platinum Electrodeposition at a Fixed Average Current Density”, the Open Electrochemistry Journal, Vol. 3, pp. 1-5, 2011.
[10] H. Dahms & I. M. Croll, “The Anomalous Codeposition of Iron‐Nickel Alloys”, Journal of the Electrochemical Society, Vol. 112, pp. 771-775, 1965.
[11] W. Lu, P. Huang, C. He and B. Yan, “Compositional and Structural Analysis of FeCo Films Electrodeposited at Different Temperatures”, International Journal of Electrochemical Science, Vol. 7, pp. 12262-12269, 2012.
[12] Yuliy D. Gamburg & G. Zangari, “Theory and Practice of Metal Electrodeposition”, Springer, 2011.
[13] Sanaty-Zadeh, K. Raeissi, & A. Saidi, “Magnetic Properties of Nanocrystalline Fe-Ni Alloys Synthesized by Direct and Pulse Electrodeposition”, International Journal of Modern Physics, Vol. 25B, pp. 2031-2038, 2011.
[14] B. D. Cullity, “Elements of X-Ray Diffraction”, 2nd ed, Addison-Wesley Piblishing Company, pp. 284, 1987.
[15] E. Gomez, R. Pollina & E. Valles, “Nickel Electrodeposition on Different Metallic Substrates”, Journal of Electroanalytical Chemistry, Vol. 386, pp. 45-56, 1995.
[16] M. R. Zamanzad-Ghavidel, K. Raeissi & A. Saatchi, “Effect of Substrate Texture and Deposition Current Density on Properties of Ni Nanocrystalline Electrodeposits”, Iranian Journal of Materials Science & Engineering, Vol. 9, 2012.
[17] ع.، نصر اصفهانی و م. حیدرزاده سهی، "آبکاری آلیاژ روی- نیکل بر روی فولاد با استفاده از جریان منقطع"، نشریه استقلال ٢٣ ، شمارة ٢، اسفند سال ١٣٨3.
[18] Y. Boonyongmaneerat, K. Saengkiettiyut, S. Saenapitak & S. Sangsuk, “Effects of WC Addition on Structure and Hardness of Electrodeposited Ni–W”, Surface & Coatings Technology, Vol. 203, pp. 3590–3594, 2009.
[19] B. Koo & B. Yoo, “Electrodeposition of Low- Stress NiFe Thin Films from a Highly Acidic Electrolyte”, Surface & Coatings Technology, Vol. 205, pp. 740– 744, 2010.
[20] R. Abdel-Karim, Y. Reda, M. Muhammed, S. El-Raghy, M. Shoeib & H. Ahmed, “Electrodeposition and Characterization of Nanocrystalline Ni-Fe Alloys”, Journal of Nanomaterials, Article ID 519274, pp. 8, 2011.
[21] N. D. Nikolic, L. J. Pavlovic, M. G. Pavlovic & K. I. Popov, “Effect of Temperature on the Electrodeposition of Disperse Copper Deposits”, Journal of Serbian Chemical Society, Vol. 72, pp. 1369–1381, 2007.
[22] D. K. Singh, M. K. Tripathi & V. B. Singh, “Electro-Codeposition and Characterization of Ni-WC Composite Coating from Non–Aqueous Bath”, International Journal of Materials Science and Applications, Vol. 2, pp. 68-73, 2013.
[23] V. Marinovic, J. Stevanovic, B. Jugovic & M. Maksimovic, “Hydrogen Evolution on Ni/WC Composite Coatings”, Journal of Applied Electrochemistry, Vol. 36, pp. 1005–1009, 2006.