Investigation the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded AZ31 magnesium alloy
Subject Areas :AMIN ABDOLLAHZADEH 1 * , Ali shokouhfar 2 , حمید امیدوار 3 , محمد علی صفرخانیان 4 , محمدرضا نادری 5
1 - Ph.D. Student, Department of Material Science, Khajeh Nasiredin Toosi Industrial University, Tehran, Iran
2 - Professor, Department of Material Science, Khajeh Nasiredin Toosi University of Technology, Tehran, Iran
3 - دانشکده مهندسی معدن و متالورژی دانشگاه صنعتی امیرکبیر
4 - دانشکده مواد دانشگاه آزاد اسلامی واحد شهر مجلسی
5 - دانشکده مهندسی و علم مواد دانشگاه صنعتی شریف
Keywords: Hardness, Tensile strength, Friction Stir Welding, AZ31 magnesium alloy, SiC nano particle,
Abstract :
In this study, the friction stir welding process was used for simultaneously joining of AZ31 magnesium alloy and production of Mg/Sic nanocomposite in the stir zone. All combinations of three rotational speeds i.e, 600, 800, and 1000 rpm and four traveling speeds i.e, 25, 75, 125 and 175 mm/min were tested and then the mechanical properties were examined. The joint fabricated with rotational speed of 800 rpm and traveling speeds of 75 mm/min, exhibited the highest mechanical properties, So that the yield strength, tensile strength and percent elongation improved by 11%, 39% and 88%, respectively. The results show that the proper distribution of nanoparticles in the stir zone can reduce the average grain size and improve mechanical properties. The main reason for this change is related to pinning effect and increased nucleation sites associated with SiC nano-particles. Moreover, reinforcement particles resulted in breaking of primary grains in stir zone of friction stir welding.
[1] K. Máthis, Z. Trojanová, P. Lukáč, C. H. Cáceres, & J. Lendvai, “Modeling of hardening and softening processes in Mg alloys”, Journal of Alloys and Compounds, Vol. 378, pp. 176-179, 2004.
[2] B. L. Mordike & T. Ebert, “Magnesium Properties - applications - potential”, Materials Science and Engineering, Vol. 302A, pp. 37-45, 2001.
[3] D. L. Atwell, M. R. Barnett & W. B. Hutchinson, “The effect of initial grain size and temperature on the tensile properties of magnesium alloy AZ31 sheet”, Materials Science and Engineering, Vol. 549A, pp. 1-6, 2012.
[4] Weisheit, R. Galun & B. L. Mordike, “CO2 laser beam welding of magnesium-based alloys”, Welding Journal, Vol. 77, pp. 148-154, 1998.
[5] L. Ceschini, I. Boromei, G. Minak, A. Morri & F. Tarterini, “Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3 composite”, Compos. Sci.Technol, Vol. 67, pp. 605–615, 2007.
[6] Ellis MBD, “Joining of aluminium based metal matrix composites”, Int Mater Rev, Vol. 41, No. 2, pp. 41–58, 1996.
[7] م. صفرخانیان، م. گودرزی و س. م. بوترابی، "مکانیزم تشکیل دانه ها در منطقه ی اختلاط حین جوشکاری اصطکاکی اختلاطی (FSW) و بررسی اثر سرعت دورانی ابزار و سرعت جوشکاری بر اندازه دانه ها"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال ششم، شماره 2، تابستان 1391.
[8] ر. بازرگان لاری و ا. وفا، "مقایسه رفتار خوردگی آلیاژ آلومینیوم 6061 جوش داده شده به روش FSLW و GTALW"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال دهم، شماره 2، تابستان 1395.
[9] M. Srinivasan, C. Loganathan, V. Balasubramanian, Q. B. Nguyen, M. Gupta & R. Narayanasamy, “Feasibility of joining AZ31B magnesium metal matrix composite by friction welding”, Materials & Design, Vol. 32, pp.1672-1676, 2011.
[10] W. B. Lee, C.Y. Lee, M. K. Kim, J. Yoon, Y. J. Kim, Y. M. Yoen & S. B. Jung, “Microstructures and wear property of friction stir welded AZ91 Mg/SiC particle reinforced composite”, Composites Science and Technology. Vol. 66, pp. 1513–1520, 2006.
[11] S. Gopalakrishnan & N. Murugan, “Prediction of tensile strength of friction stir welded aluminium matrix TiC particulate reinforced composite”, Materials & Design, Vol. 32, pp. 462–467, 2011.
[12] م. سلیمانی، س. ف. کاشانی بزرگ و ع. م. هادیان، " ارزیابی سایشی لایه سطحی نانوکامپوزیت هیبریدیAl7075/SiC-BN تشکیل شده توسط روش همزن اصطکاکی"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال دهم، شماره 1، بهار 1395.
[13] م. مسائلی و ک. امینی، "بررسی سختی و رفتار تریبولوژیکی نانوکامپوزیت سطحی Al/Al2O3-TiB2 ساخته شده با فرآوری همزن اصطکاکی"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال دهم، شماره 1، بهار 1395.
[14] Y. Morisada, H. Fujii, T. Nagaoka & M. Fukusumi, “Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31”, Materials Science and Engineering, Vol. 433A, pp. 50-54, 2006.
[15] M. Barmouz, P. Asadi, MK. Besharati Givi & M. Taherishargh, “Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction”, Mater. Sci. Eng, Vol. 528A, pp. 1740–1749, 2011.
[16] Y. Morisada, H. Fujii, T. Nagaoka & M. Fukusumi, “MWCNTs/AZ31 surface composites fabricated by friction stir processing”, Materials Science and Engineering, Vol. 419A, pp. 344-348, 2006.
[17] M. Azizieh, A. H. Kokabi & P. Abachi, “Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing”, Materials & Design, Vol. 32, pp. 2034-2041, 2011.
[18] D. Khayyamin, A. Mostafapour & R. Keshmiri, “The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP”, Materials Science and Engineering, Vol. 559A, pp. 217-221, 2013.
[19] YF. Sun & H. Fujii, “The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints”, Mater. Sci. Eng, Vol. 528A, pp. 5470–5475, 2011.
[20] M. Bahrami, K. Dehghani & M. K. Besharati Givi, “A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique”, Materials & Design, Vol. 53, pp. 217-225, 2013.
[21] M. Bahrami, M. K. Besharati Givi, K. Dehghani & N. Parvin, “A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique”, Materials and Design, Vol. 53, pp. 519–527, 2014.
[22] D. Khayyaminn, A. Mostafapour & R. Keshmiri, “The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP”, Materials Science & Engineering, Vol. 559A, pp. 217–221, 2013.
[23] L. Commin, J. E. Masse & L. Barrallier, “Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters”, Acta Materialia, Vol. 59, pp. 326–334, 2009.
[24] P. Asadi, G. Faraji & M. K. Besharati, “Producing of AZ91/SiC composite by friction stir processing (FSP)”, Int J Adv Manuf Technol, Vol. 51, pp. 247-260, 2010.
[25] H. Ye & X. Liu, “Review of recent studies in magnesium matrix composites”, Jornal of Materials Science, Vol. 39, pp. 6153-6171, 2004.
[26] G. Ellwood Dieter, “Mechanical metallurgy”, 3rd ed, McGraw-Hill, Michigan, 1986.
[27] L. commin, M. Dumont, R. Rotinat, F. Pierron, J. Masse & L. Barrallier, “Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds”, Materials Science and Engineering, Vol.551A, pp. 288– 292, 2012.
[28] R. S. Mishra & Z. Y. Ma, “Friction stir welding and processing”, Mater Sci Eng R, Vol. 50, pp. 1-78, 2005.
[29] W. B. Lee, C. Y. Lee, M. K. Kim, J. Yoon, Y. J. Kim, Y. M. Yoem & S. B. Jung, “Microstructures and wear property of friction stir welded AZ91 Mg/SiC particle reinforced composite”, Composites Science and Technology, Vol. 66, pp. 1513-1520, 2006.
[30] Gh. Faraji & P. Asadi, “Characterization of AZ91/alumina nano-composite produced by FSP”, Materials Science and Engineering, Vol. 528A, pp. 2431-2440, 2011.
[31] M. Abbasi Gharacheh, A. H. Kokabi, G. H. Daneshi, B. Shalchi & R. Sarrafi, “The influence of the ratio of rotational speed/traverse speed on mechanical properties of AZ31 friction stir welds”, Machine Tools and Manufacture, Vol. 46, pp. 1983-1987, 2006.
_||_