A fuzzy interval dynamic optimization model development for surface water resources allocation based on ecological and water scarcity factors, the case of Simineh River Basin
Prshang Azari 1 , Soheil Sobhan Ardakani 2 , mehrdad cheraghi 3 , بهاره لرستانی 4 , Amirreza Goodarzi 5
1 - Department of Environmental Engineering, College of Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
2 - Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
3 - Associate Professor, Department of the Environment, Hamedan Branch, Islamic Azad University, Hamedan,
4 - Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
5 - Department of Civil Engineering, College of Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
Keywords: Ecological processes, Fuzzy interval dynamic optimization, Water resources allocation, Water scarcity,
Abstract :
Allocation of surface water resources is considered as a solution to deal with water stress, especially in low rainfall areas, but the existence of high uncertainty as well as the lack of water. This allocation has always caused problems and this issue has become one of the main problems of governance in low rainfall areas of the world. Hence, in this research, a fuzzy interval probabilistic planning model was designed for the allocation of surface water resources by considering ecological factors and water scarcity. In so doing, after analyzing and validating the model, parametric sensitivity analysis was performed on the ecological and economic factors in the Simineh River, which is one of the important rivers of the Urmia Lake catchment. The results showed that an increase of 10 to 50 percent of water shortage led to a drop in the values of the objective functions. Also, a 50% increase in the pollution production rate has led to a decrease in all economic and ecological goals from 2.5 to 3.5%, and a 50% increase in the removal of pollutants has also led to a 2-3% improvement in economic goals. In conclusion, it can be argued that the water scarcity is one of the consequences of the pollution of this crucial resource, and for this reason, a significant part of water resources are left out of the allocation cycle. With a 100% increase in uncertainty, the ecological goal has dropped by 2.7% and other goals have changed in the range of 1.5% to 2.0%. Considering the variables of water scarcity and water pollution can also affect the output of the developed model and provide more reliable answers, therefore, it is recommended to consider these two factors in future studies.
احمدآلی، ج.، بارانی، غ.، قادری، ک. و حصاری، ب. (1396) واسنجی و اعتبارسنجی مدل WEAP21 برای حوضههای آبریز زرینهرود و سیمینهرود. نشریه تحقیقات آب و خاک ایران، 48(4): 823-839..
فلاحی، غ. و جمالی، ل. (1396) پهنهبندی خطر زمینلغرش در حوضه آبریز سیمینهرود بوکان با تلفیق مدلهای آماری، فرآیند تحلیل سلسله مراتبی و سامانه اطلاعات مکانی. نشریه علوم و فنون نقشهبرداری، 4(6): 185-199.
مسگری، م.س.، فرجزاده¬اصل، م.، خدادادی¬دربان، ا.، هاشمی، ه. و امینی، ج. (1392) پهنهبندي كيفيت آلودگي آب رودخانه با استفاده از شبكههاي عصبي مصنوعي و سامانه اطلاعات جغرافيايي، مطالعه موردي رودخانه سيمينهرود. نشریه سنجش از دور و GIS ایران، 5(3): 15-1.
Aldieri, L., Brahmi, M., Chen, X. and Vinci, C.P. (2021) Knowledge spillovers and technical efficiency for cleaner production: An economic analysis from agriculture innovation. Journal of Cleaner Production, 320: 128830.
Bozorgzadeh, E. and Mousavi, S.J. (2023) Water-constrained green development framework based on economically-allocable water resources. Scientific Reports, 13: 5306.
Calvete, H.I., Galé, C., Iranzo, J.A. and Mateo, P.M. (2023) A decision tool based on bilevel optimization for the allocation of water resources in a hierarchical system. International Transactions in Operational Research, 30(4): 1673-1702.
Chen, Y., Fu, Q., Singh, V.P., Ji, Y., Li, M. and Wang, Y. (2023) Optimization of agricultural soil and water resources under fuzzy and random uncertainties: Synergy and trade-off between equity-based economic benefits, nonpoint pollution and water use efficiency. Agricultural Water Management, 281: 108264.
Deng, L., Guo, S., Yin, J., Zeng, Y. and Chen, K. (2022) Multi-objective optimization of water resources allocation in Han River basin (China) integrating efficiency, equity and sustainability. Scientific Reports, 12: 798.
Gao, Y., Wei, N., Song, X., Gu, J., Yang, F., Zhang, S. and He, S. (2021) Research and realization of non-traditional water resources optimal allocation model. Proceedings of The International Conference on Water Resource and Environment, pp: 351-358.
Genova, P. and Wei, Y. (2023) A socio-hydrological model for assessing water resource allocation and water environmental regulations in the Maipo River basin. Journal of Hydrology, 617: 129159.
HAO, N., SUN, P., HE, W., YANG, L., QIU, Y., CHEN, Y. AND ZHAO, W. (2022) WATER RESOURCES ALLOCATION IN THE TINGJIANG RIVER BASIN: CONSTRUCTION OF AN INTERVAL-FUZZY TWO-STAGE CHANCE-CONSTRAINTS MODEL AND ITS ASSESSMENT THROUGH PEARSON CORRELATION. WATER, 14(18): 2928.
Jain, S., Ramesh, D., Trivedi, M.C. and Edla, D.R. (2023) Evaluation of metaheuristic optimization algorithms for optimal allocation of surface water and groundwater resources for crop production. Agricultural Water Management, 279: 108181.
Li, M., Yang, X., Wu, F. and Babuna, P. (2022) Spatial equilibrium-based multi-objective optimal allocation of regional water resources. Journal of Hydrology: Regional Studies, 44: 101219.
Li, Y., Han, Y., Liu, B., Li, H., Du, X., Wang, Q., Wang, X. and Zhu, X. (2023) Construction and application of a refined model for the optimal allocation of water resources—Taking Guantao County, China as an example. Ecological Indicators, 146(2): 109929.
Luo, Y., Sha, J., Liu, B., Zhang, Y. and Yang, J. (2023) Optimal allocation of water resources based on GWAS Model in Handan, China. Water, 15(6): 1090.
Ranarahu, N. and Dash, J.K. (2022) Computation of multi-objective two-stage fuzzy probabilistic programming problem. Soft Computing, 26(1): 271-282.
Suo, M., Xia, F. and Fan, Y. (2022) A fuzzy-interval dynamic optimization model for regional water resources allocation under uncertainty. Sustainability, 14(3): 1096.
Wang, Z., Tian, J. and Feng, K. (2022) Optimal allocation of regional water resources based on simulated annealing particle swarm optimization algorithm. Energy Reports, 8: 9119-9126.
Wang, Z., Zhao, X., Wang, J., Song, N. and Han, Q. (2023) Agricultural water allocation with climate change based on gray wolf optimization in a semi-arid region of China. Environmental Science, 11: e14577.
Zhang, J., Meng, C., Hu, S. and Li, W. (2022) Optimal Allocation Model for Water Resources Coupled with Ecological Value Factors—A Case Study of Dalian, China. Water, 14(2): 266-266.