Evaluating the coagulant efficiency of functionalized magnetite nanoparticles in removing some pollutants from aquatic ecosystems
Mohammad Amin Ardalani 1 , mehrdad cheraghi 2
1 - 1. M.Sc. Geaduated in Environmental Science, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
2 - 2. Ph.D. in Environmental Science, Professor in Environmental Science, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
Keywords: BOD, COD, Functionalized magnetite nanoparticles, Municipal wastewater, TDS,
Abstract :
Considering the importance of water in life as well as environmental issues, its purification is of particular importance. One of the most important methods of water and wastewater treatment is the coagulation of pollutants in water by coagulants. The aim of this study was to determine the efficiency of coagulation process to reduce biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total soluble solids (TDS) using magnetite nanoparticles functionalized with 2,4-dinitrophenyl hydrazine as a coagulant. This study was an empirical investigation in which 2,4-dinitrophenylhydrazine functionalized magnetite nanoparticles were synthesized by co-precipitation method and were used as a coagulant for the removal of BOD, COD, and TDS from Hamedanmunicipal sewage. Nanoparticles were characterized using SEM, XRD, and FTIR methods. Experiments were conducted discontinuously and the variable effects such as pH (2-11), coagulation dose (10-80 mg), mixing time (2-60 min), and sedimentation time (10-50 min) on the efficacy of BOD, COD, and TDS removal were studied. SEM image showed that the 2,4-dinitrophenylhydrazine functionalized magnetite nanoparticles had spherical shapes with the size of 20-35 nm. The obtained results showed that with 20 min of mixing time, 60 mg/L of coagulant, 30 min of settling time and pH equal to 7, the removal efficiency of BOD, COD and TDS increased to 98%, 94% and 99.2%.2,4-dinitrophenylhydrazine functionalized magnetite nanoparticles can be used as an effective and available coagulant to remove BOD, COD and TDS from municipal wastewater.
طاهریون، م. و معماریپور، ع. (1398) ارزیابی فرآیند انعقاد و لخته¬سازی در حذف فلزات سنگین از پساب شیمیایی مجتمع فولاد مبارکه. علوم و تکنولوژی محیط زیست، 21(6): 46-61.
محوی، ا.ح.، دهقانی، م.ه.، کیانی¬فیض¬آبادی، ق. و بارانی، م. (1391) ارزیابی عملکرد سه منعقدکننده مختلف جهت تصفیه شیرابه کارخانه کمپوست اصفهان. تحقیقات نظام سلامت، 8(1): 146-155.
Aboubaraka, A.E., Aboelfetoh, E.F. and Ebeid, E.-Z.M. (2017) Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water. Chemosphere, 181(2): 738-746.
Bachand, S.M., Kraus, T.E., Stern, D., Liang, Y.L., Horwath, W.R. and Bachand, P.A. (2019) Aluminum-and iron-based coagulation for in-situ removal of dissolved organic carbon, disinfection byproducts, mercury and other constituents from agricultural drain water. Ecological Engineering, 134(3): 26-38.
Can, O.T., Gengec, E. and Kobya, M. (2019) TOC and COD removal from instant coffee and coffee products production wastewater by chemical coagulation assisted electrooxidation. Journal of Water Process Engineering, 28(3): 28-35.
Cheng, Z., Yang, B., Chen, Q., Ji, W. and Shen, Z. (2018) Characteristics and difference of oxidation and coagulation mechanisms for the removal of organic compounds by quantum parameter analysis. Chemical Engineering Journal, 332(1): 351-360.
Dotto, J., Fagundes-Klen, M.R., Veit, M.T., Palacio, S.M. and Bergamasco, R. (2019) Performance of different coagulants in the coagulation/flocculation process of textile wastewater. Journal of cleaner production, 208(4): 656-665.
Eslami, H., Ehrampoush, M.H., Esmaeili, A., Salmani, M.H., Ebrahimi, A.A., Ghaneian, M.T., Falahzadeh, H. and Fouladi Fard, R. (2019) Enhanced coagulation process by Fe-Mn bimetal nano-oxides in combination with inorganic polymer coagulants for improving As (V) removal from contaminated water. Journal of Cleaner Production, 208(3):384-392.
Gan, Y., Wang, X., Zhang, L., Wu, B., Zhang, G. and Zhang, S. (2019) Coagulation removal of fluoride by zirconium tetrachloride: Performance evaluation and mechanism analysis. Chemosphere, 218(1): 860-868.
Guida, M., Mattei, M., Della Rocca, C., Melluso, G. and Meriç, S. (2007) Optimization of alum-coagulation/flocculation for COD and TSS removal from five municipal wastewater. Desalination, 211(1-3): 113-127.
Hu, R., Liu, Y., Zhu, G., Chen, C., Hantoko, D. and Yan, M. (2022) COD removal of wastewater from hydrothermal carbonization of food waste: Using coagulation combined activated carbon adsorption. Journal of Water Process Engineering, 45(1): 102462.
Kim, K.-W., Shon, W.-J., Oh, M.-K., Yang, D., Foster, R.I. and Lee, K.-Y. (2019) Evaluation of dynamic behavior of coagulation-flocculation using hydrous ferric oxide for removal of radioactive nuclides in wastewater. Nuclear Engineering and Technology, 51(3):738-745.
Li, N., Sheng, G.-P., Lu, Y.-Z., Zeng, R.J. and Yu, H.-Q. (2017) Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Research, 111(4): 204-212.
Liu, Y., Zhang, J., Huang, H., Huang, Z., Xu, C., Guo, G., He, H. and Ma, J. (2019) Treatment of trace thallium in contaminated source waters by ferrate pre-oxidation and poly aluminium chloride coagulation. Separation and Purification Technology, 227(3): 115663.
Mateus, G.A.P., Paludo, M.P., dos Santos, T.R.T., Silva, M.F., Nishi, L., Fagundes-Klen, M.R., Gomes, R.G. and Bergamasco, R. (2018) Obtaining drinking water using a magnetic coagulant composed of magnetite nanoparticles functionalized with Moringa oleifera seed extract. Journal of Environmental Chemical Engineering, 6(4): 4084-4092.
Shabanizadeh, H. and Taghavijeloudar, M. (2023) A sustainable approach for industrial wastewater treatment using pomegranate seeds in flocculation-coagulation process: Optimization of COD and turbidity removal by response surface methodology (RSM). Journal of Water Process Engineering, 53(7): 103651.
Sillanpää, M., Ncibi, M.C., Matilainen, A. and Vepsäläinen, M. (2018) Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere, 190(2): 54-71.
Sobhanardakani, S. and Zandipak, R. (2015) 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples. Environmental Monitoring and Assessment, 187(7): 412-412.
Verma, A.K., Dash, R.R. and Bhunia, P. (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1):154-168.
Zandipak, R., Sobhan Ardakani, S. and Shirzadi, A. (2020) Synthesis and application of nanocomposite Fe3O4@SiO2@CTAB–SiO2 as a novel adsorbent for removal of cyclophosphamide from water samples. Separation Science and Technology, 55(3): 456-470.
Zhu, Y., Hu, J. and Wang, J. (2012) Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials, 221(1): 155-161.