Strong convergence algorithm for solving an equilibrium problem and a fixed point problem using the Bergman distance in Banach spaces
Subject Areas : Analyze
Mostafa Ghadampour
1
*
,
ٍEbrahim Soori
2
1 - Department of Mathematics, Payame Noor University, Tehran, Iran
2 - Department of Mathematics, Lorestan University, Lorestan, Khoramabad, Iran.
Keywords: مسئله نقطه ثابت, نقطه ثابت مجانبی, نگاشت غیر انبساطی برگمن, نابرابری تغییراتی, فرشه دیفرانسیل پذیر,
Abstract :
In this paper, using the Bergman distance, we introduce a new projection-type algorithm for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points. Then, the strong convergence of the sequence generated by the algorithm under suitable conditions is proved. In fact, we prove that the sequence generated by the algorithm converges to the projection of an element in the intersection of the fixed points set and the solutions set of an equilibrium problem. For this purpose, we introduce a Bergman Lipschitz-type condition for a pseudomonotone bifunction. Then, we see an application for a variational inequality problem and we apply our result for finding a common element of the solution set of a variational inequality problem and the set of fixed points of a nonexpansive mapping. Finally, using MATLAB software, we provide a numerical example to illustrate the convergence performance of the main algorithm.
[1] R. P. Agarwal, D. Oregan, and D. R. Sahu, “Fixed point theory for Lipschitzian-type mappings
with applications,” vol. 6, Springer, New York., 2009.
[2] A. Ambrosetti, G. Prodi, “A Primer of Nonlinear Analysis” Cambridge University Press, Cambridge., 1993.
[3] P.N. Anh, “A hybrid extragradient method for pseudomonotone equilibrium problems and fixed point problems,” Bull. Malays. Math. Sci. Soc., vol. 36, no. 1, pp. 107-116, 2013.
[4] H. H. Bauschke, J. M. Borwein, “On projection algorithms for solving convex feasibility problems,” SIAM Rev., vol. 38, pp. 367-426, 1996.
[5] H. H. Bauschke, J. M. Borwein, and P. L. Combettes, “Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces,” Communications in Contemporary Mathematics., vol. 3, pp. 615-647, 2001.
[6] J. F. Bonnans, A. Shapiro, “Perturbation Analysis of Optimization Problems,” Springer, New York., 2000.
[7] L.M. Bregman, “A relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming,” USSR Comput. Math. Math. Phy., vol. 7, pp. 200-217, 1967.
[8] D. Butnariu, A. N. Iusem, and C. Z˘alinescu, “On uniform convexity, total convexity and convergence
of the proximal point and outer Bregman projection algorithms in Banach spaces,” J. Convex Anal., vol. 10, pp. 35-61, 2003.
[9] D. Butnariu, A. N. Iusem, “Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization,” Kluwer Academic Publishers, Dordrecht., 2000.
[10] D. Butnariu, E. Resmerita, “Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces,” Abstr. Appl. Anal. Art., ID 84919, pp. 1-39, 2006.
[11] Y. Censor, S. Reich, “Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization,” Optimization., vol. 37, pp. 323-339, 1996.
[12] I. Cioranescu, “Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems,” Kluwer Academic Publishers, Dordrecht., 1990.
[13] G.Z. Eskandani, M. Raeisi, and T. M. Rassias, “A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance,” J. Fixed Point Theory Appl., vol. 20, no. 132, 2018.
[14] M. Ghadampour, E. Soori, R. P. Agarwal and D. O′Regan, “Two generalized strong convergence algorithms for variational inequality problems in Banach spaces,” Fixed Point Theory., vol. 25, no. 1, pp. 143-162, 2024.
[15] M. Ghadampour, D. O′Regan, E. Soori, and R. P. Agarwal, “A strong convergence algorithm in the presence of errors for variational inequality problems in Hilbert spaces,” Journal of Function Spaces., 2021. https://doi:org/10.1155/2021/9911241
[16] J. B, Hiriart-Urruty, C. Lemarchal, “C Grundlehren der mathematischen Wissenschaften,” Convex Analysis and Minimization Algorithms II. Springer, Berlin., 1993.
[17] L. O. Jolaoso, A. Taiwo, and T. O. Alakoya, “A Strong Convergence Theorem for Solving Pseudomonotone Variational Inequalities Using Projection Methods,” J Optim Theory Appl., vol. 185, pp. 744-766, 2020.
[18] F. Kohsaka, W. Takahashi, “Proximal point algorithm with Bregman functions in Banach spaces,” J. Nonlinear Convex Anal., vol. 6, pp. 505-523, 2005.
[19] P. E. Maing´e, “Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization,” Set-valued Anal., vol. 16, pp. 899-912, 2008.
[20] E. Naraghirad, J. C. Yao, “Bregman weak relatively nonexpansive mappings in Banach spaces,” Fixed Point Theory Appl., 2013. https://doi.org/10.1186/ 1687-1812-2013-141
[21] D. Reem, S. Reich, A. De Pierro, “Re-examination of Bregman functions and new properties of their divergences,” Optimization., vol. 68, pp. 279-348, 2019.
[22] S. Reich, “A weak convergence theorem for the alternating method with Bregman distances,” Theory and applications of Nonlinear Operators of Accretive and Monotone Type., pp. 313-318, 1996.
[23] S Reich, S. Sabach, “A strong convergence theorem for proximal type- algorithm in reflexive Banach spaces,” J. Nonlinear Convex Anal., vol. 10, pp. 471-485, 2009.
[24] S. Sabach, “Products of finitely many resolvents of maximal monotone mappings in reflexive banach spaces,” SIAM J. Optim., vol. 21, pp. 1289-1308, 2011.
[25] F. Schopfer, T. Schuster, “Louis, A.K: An iterative regularization method for the solution of the split feasibility problem in Banach spaces,” Inverse Probl., vol. 24, no. 5, pp. 055-008, 2008.
[26] N. Shahzad, H. Zegeye, “Convergence theorem for common fixed points of a finite family of multi-valued Bregman relatively nonexpansive mappings,” Fixed Point Theory Appl., 2014.
[27] A. Tada, W. Takahashi, “Strong convergence theorem for an equilibrium problem and a nonexpansive mapping,” Nonlinear Analysis and Convex Analysis.
Yokohama Publishers., Yokohama, 2006.
[28] W. Takahashi, “Nonlinear Functional Analysis,” Yokohama Publishers, Yokohama., 2000.
[29] D. V. Thong, V. T. Dung, and Y. J. Cho, “A new strong convergence for solving split variational inclusion Problems,” Numer Algor., vol. 86, pp. 565-591, 2021.
[30] J. V. Tiel, “ Convex Analysis: An introductory text,” Wiley, New York., 1984.
[31] H. K. Xu, “Another control condition in an iterative method for nonexpansive mappings,” Bull. Austral. Math. Soc., vol. 65, pp. 109-113, 2002.
[32] J. C. Yao, “Variational inequalities with generalized monotone operators,” Math. Oper. Res., vol. 19, pp. 691-705, 1994.
[33] C. Zălinescu, “Convex analysis in general vector spaces,” World Scientific Publishing, Singapore., 2002.
[34] X. Zhao, M. A. Kobis and Y. Yao, “A Projected Subgradient Method for Nondifferentiable Quasiconvex Multiobjective Optimization Problems,” J Optim Theory Appl., 2021.