• Home
  • Mojtaba Nasre Isfahani
  • OpenAccess
    • List of Articles Mojtaba Nasre Isfahani

      • Open Access Article

        1 - Kinetic Modeling And Optimization Of Effective Parameters Of 4-Chlorophenol Wastewater Treatment In Adsorption Process With Activated Carbon/Magnetite Nanocatalyst In Aqueous Solution
        Farham Aminsharei Mohammad Astaraki Sahand Jorfi Reza Darvishi Cheshmeh Soltani Mojtaba Nasre Isfahani
        Introduction: Organic and cyclic chlorinated compounds such as 4-chlorophenol in surface and underground water sources due to its widespread use in various industries and causing irreparable problems and side effects such as carcinogenesis, mutagenesis, birth defects an More
        Introduction: Organic and cyclic chlorinated compounds such as 4-chlorophenol in surface and underground water sources due to its widespread use in various industries and causing irreparable problems and side effects such as carcinogenesis, mutagenesis, birth defects and high toxicity are of great concern to conservation organizations. It was from the environment. Materials and Methods: This study is an applied research that was conducted in a pilot and laboratory scale. In this study, first an aqueous solution containing 4-chlorophenol was prepared, and then using waste rubber to prepare activated carbon, carbon/magnetite nano catalyst was prepared, and for this purpose, 100 ml of the aqueous solution was placed in contact with the activated carbon absorber and the influencing variables In the adsorption process (pH, Temperature, Adsorbent dose and Retention Time) the response surface method (RSM) was designed by selecting the central composite design (CCD). Results and Discussion: For the absorption process of 4-chlorophenol using activated carbon/magnetite, a test model was conducted with 30 runs and the adjusted and predicted R2 were estimated as 0.919 and 0.762, respectively, and based on ANOVA, the process model The absorption of 4-chlorophenol with the proposed adsorbent was significant and the F-value was 24.58. Also, the independent factors in this study (pH, Temperature, Adsorbent dose and Retention Time) were significant. Conclusion: According to the influence of different parameters in choosing optimal conditions, The software proposed 100 solutions, and finally the first solution was selected with a favorability of 0.948, and the effective parameters for absorption were optimized as follows: pH 3, temperature 42.5 ℃, adsorbent dosage g L(-1) 1.84 and the retention time is 91 minutes. Also, the results of adsorption modeling showed that by increasing the dosage of adsorbent, the process can be completed in a shorter time, and increasing the adsorbent dose beyond the optimal amount is not economically viable. Manuscript profile