Evaluation of the effect of spirulina on cadmium absorbtion in C57mice
Subject Areas : Applied MicrobiologyAli Sharifzadeh 1 , Saeed Nazaratizade 2
1 - Department of Microbiology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
2 - Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
Keywords:
Abstract :
Cadmium is one of the most important heavy metals in the soil that is environmentally important in humans and causes numerous health effects for humans. The aim of this study was to evaluate the effect of cyanobacteria Spirulina platensis (arthrospira platensis) on reduction of cadmium accumulation in liver and kidney of C57 mice.In this study, 16 C57 mice were randomly divided into 4 control and treatment groups. The control group was treated with physiological saline and the groups were treated with 1000 µg / ml cadmium chloride , 1% spirulina in diet and mixture cadmium and spirulina . On day 24, mices were killed after anesthesia with ether and cadmium levels in the feces, liver and kidney were measured by atomic absorption spectrophotometry.Cyanobacteria Spirulina platensis increased concentration of x percent cadmium excretion in the feces and reduce the heavy metal accumulation in mouse kidney C57 Y percent respectively.According to the findings of this study, it can be concluded that the use of this bacterium has a significant effect on decreasing digestive uptake of cadmium.
the vicinity of asphalt plants in delta state, Nigeria. Environmental Forensics 14: 248-259.
2. Lu, A., hang, Sh., Shan, X. Q., 2005. Time effect on the fractionation of heavy metals in soils.
Geoderma 125: 225-234.
3. Wu, Ch., Yan, Sh., hang, ., Luo, Y., 2015. Chemical forms of cadmium in a calcareous soil
treated with different levels of phosphorus-containing acidifying agents. Soil Research 53:
105-111.
4. Malakouti, M.J .2011. Relationship between Balanced Fertilization and ealthy Agricultural
Products (A Review) Journal of Crop and Weed Ecophysiology / Vol. 4, No. 4(16): 11-20.
5. Nwokocha, C.R., Owu, D.U., Nwokocha, M.I., Ufearo, C.S. and Iwuala, M.O.E. 2012.
Comparative study on the efficacy of lliu sativu (garlic) in reducing some heavy metal
accumulation in liver of wistar rats. Food Chemistry and Toxicology, 50: 222–6.
6. alttunen, T., Salminen, S. and Tahvonen, R. 2007. Rapid removal of lead and cadmium from
water by specific lactic acid bacteria. International Journal of Food Microbiology, 114: 30–51.
7. Malago, J.J. and oninkx, J.F.J.G. 2011. Probiotic Bacteria and Enteric Infections. Springer.
9–11.
8. Turroni, F., Foroni, E., Pizzetti, P., Giubellini, V., Ribbera, A., Merusi, P., 2009. Exploring the
diversity of the bifidobacterial population in the human intestinal tract. Appllied and
Environmental Microbiology, 75: 1534–1545.
9. Monachese, M., Burton, J.P. and Reid, G. 2012. Bioremediation and tolerance of humans to
heavy metals through microbial processes: a potential role for probiotics? Appllied and
Environmental Microbiology, 78: 6397–404.
10. Jafari, N., Ahmadi asbchin, S., 2013. Adsorption of cadmium and lead ions from aqueous
solution by brown algae Cystoseira indica. Journal of plant researches (Iranian journal of
biology) 27(1): 23-31. (in persian).
11. Choonawala B. 2007. Spirulina production in Brine Effluent from Cooling Towers, Durban
University of Technology
12. Al- omaidan, A. A., Al- ouri, . J., Al- azzani, A. A., Elgaaly, G., Moubayed, N. M.S.,
2014. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass.
Arabian Journal of Chemistry 7: 57-62.
13. Rangsayatorn, N., E. S. Upatham, M. ruatrachue, P. Pokethitiyook and G. R. Lanza. 2002.
Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies
of cadmium. Environmental Pollution 119 : 45–53
14. elekli, A., Bozkurt, ., 2011. Bio-sorption of cadmium and nickel ions using Spirulina
platensis: inetic and equilibrium studies. Desalination 275: 141-147.
15. Al- omaidan, A. A., Alabdullatif, J. A., Al- azzani, A. A., Al-Ghanayem, A. A., Alabbad, A.
F., 2015. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi
Journal of Biological Sciences 22: 1-6.
16. wak , . W., im, M. ., Lee, J. Y., Yun, ., im, M. ., Park, Y. ., Lee, . ., 2015.
Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for
chromium (VI) removal. Algal Research 7: 92-99.
17. Chojnacka ., Chojnacki A. and Górecka .,2005.Biosorption of Cr3+, Cd2+ and Cu2+ ions
by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process,
Chemosphere 59(1): 75-84.
18. Murugesan, A. G., Maheswari, S., Bagirath, G., 2008. Biosorption of cadmium by live and
immobilized cells of Spirulina latensis. International Journal Environment Research 2(3):
307-312.
19. are L., Safarzadeh S., arami S. 2018. Effect of Spirulina green algae and incubation time
on cadmium chemical forms in a calcareous soil . Journal of Natural Environment 70(3):
643-657
_||_
the vicinity of asphalt plants in delta state, Nigeria. Environmental Forensics 14: 248-259.
2. Lu, A., hang, Sh., Shan, X. Q., 2005. Time effect on the fractionation of heavy metals in soils.
Geoderma 125: 225-234.
3. Wu, Ch., Yan, Sh., hang, ., Luo, Y., 2015. Chemical forms of cadmium in a calcareous soil
treated with different levels of phosphorus-containing acidifying agents. Soil Research 53:
105-111.
4. Malakouti, M.J .2011. Relationship between Balanced Fertilization and ealthy Agricultural
Products (A Review) Journal of Crop and Weed Ecophysiology / Vol. 4, No. 4(16): 11-20.
5. Nwokocha, C.R., Owu, D.U., Nwokocha, M.I., Ufearo, C.S. and Iwuala, M.O.E. 2012.
Comparative study on the efficacy of lliu sativu (garlic) in reducing some heavy metal
accumulation in liver of wistar rats. Food Chemistry and Toxicology, 50: 222–6.
6. alttunen, T., Salminen, S. and Tahvonen, R. 2007. Rapid removal of lead and cadmium from
water by specific lactic acid bacteria. International Journal of Food Microbiology, 114: 30–51.
7. Malago, J.J. and oninkx, J.F.J.G. 2011. Probiotic Bacteria and Enteric Infections. Springer.
9–11.
8. Turroni, F., Foroni, E., Pizzetti, P., Giubellini, V., Ribbera, A., Merusi, P., 2009. Exploring the
diversity of the bifidobacterial population in the human intestinal tract. Appllied and
Environmental Microbiology, 75: 1534–1545.
9. Monachese, M., Burton, J.P. and Reid, G. 2012. Bioremediation and tolerance of humans to
heavy metals through microbial processes: a potential role for probiotics? Appllied and
Environmental Microbiology, 78: 6397–404.
10. Jafari, N., Ahmadi asbchin, S., 2013. Adsorption of cadmium and lead ions from aqueous
solution by brown algae Cystoseira indica. Journal of plant researches (Iranian journal of
biology) 27(1): 23-31. (in persian).
11. Choonawala B. 2007. Spirulina production in Brine Effluent from Cooling Towers, Durban
University of Technology
12. Al- omaidan, A. A., Al- ouri, . J., Al- azzani, A. A., Elgaaly, G., Moubayed, N. M.S.,
2014. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass.
Arabian Journal of Chemistry 7: 57-62.
13. Rangsayatorn, N., E. S. Upatham, M. ruatrachue, P. Pokethitiyook and G. R. Lanza. 2002.
Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies
of cadmium. Environmental Pollution 119 : 45–53
14. elekli, A., Bozkurt, ., 2011. Bio-sorption of cadmium and nickel ions using Spirulina
platensis: inetic and equilibrium studies. Desalination 275: 141-147.
15. Al- omaidan, A. A., Alabdullatif, J. A., Al- azzani, A. A., Al-Ghanayem, A. A., Alabbad, A.
F., 2015. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi
Journal of Biological Sciences 22: 1-6.
16. wak , . W., im, M. ., Lee, J. Y., Yun, ., im, M. ., Park, Y. ., Lee, . ., 2015.
Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for
chromium (VI) removal. Algal Research 7: 92-99.
17. Chojnacka ., Chojnacki A. and Górecka .,2005.Biosorption of Cr3+, Cd2+ and Cu2+ ions
by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process,
Chemosphere 59(1): 75-84.
18. Murugesan, A. G., Maheswari, S., Bagirath, G., 2008. Biosorption of cadmium by live and
immobilized cells of Spirulina latensis. International Journal Environment Research 2(3):
307-312.
19. are L., Safarzadeh S., arami S. 2018. Effect of Spirulina green algae and incubation time
on cadmium chemical forms in a calcareous soil . Journal of Natural Environment 70(3):
643-657