Comparison of xanthan biopolymer production in mutant strains of Xanthomonas citri sub sp. citri by using cheese whey
Subject Areas :
Applied Microbiology
Roya Moravej
1
*
,
Mehrdad Azin
2
,
Seyed Mehdi Alavi
3
1 - Department of biology, Sanandaj branch,Islamic azad university, sanandaj, iran
2 - Department of Biotechnology, Iranian Research Organization for Science & Technology, Tehran, Iran
3 - Institute of Agriculture Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
Received: 2021-11-08
Accepted : 2022-02-21
Published : 2022-03-06
Keywords:
Mutagenesis,
Xanthan gum,
Xanthomonas citri,
cheese whey,
nitrous acid,
Abstract :
Background & Objectives: Xanthan gum is produced by Xanthomonas bacteria. This gum is widely used in various industries. Random mutagenesis of xanthan-producing strains can increase xanthan production capacity several times. This study aimed to evaluate Xanthomonas mutant strains with high xanthan production capacity.Materials & Methods: The native strain of Xanthomonas citri K37 was affected by nitrogenic acid mutagen and after initial screening, the mutant strains were selected based on the appearance and diameter of the colony formed on the c dye medium. Whey-based production medium was used to produce xanthan gum and then production indices such as beta-galactosidase activity, sugar consumption, production rate, and viscosity of xanthan gum were selected in selected mutant strains.Results: A total of 8 mutant strains were selected among all treated colonies. Two high-yielding strains named R3 and R8 and two low-yielding strains called M2 and M6 were selected to evaluate the activity of beta-galactosidase enzyme and glucose consumption. Strain R3 increased viscosity and amount of xanthan compared to wild strain equivalent to 200 cp and 2 g / l, respectively, and mutant M6 lost the ability to produce xanthan.Conclusion: From the native Xanthomonas citri K37 isolate, a new R3 strain was created during mutagenesis, which can be effective in low cost cheese whey as a xanthan-producing strain.
References:
Donot F. Fontana A. Baccou JC. Galindo S. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym. 2012; 87: 951-962.
Garcia-Ochoa F. Santos VE. Casas JA. Gomez E. Xanthan gum: production, recovery, and properties. Biotechnol Adv. 2000; 18(7): 549–579.
Hauben L. Vauterin L. Swings J. and Moore ER. Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int J sys bacteriol. 1997; 47(2):328–335.
Fu JF. Tseng YH. Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl Environ Microb.1990; 56: 919-923.
Miller GD. Handbook of Dairy Foods and Nutrition. 3rd ed. CRC Press; 2006.
Wiley AS. Cultures of Milk: The Biology and Meaning of Dairy Products in the United States and India. 1st ed. Massachusetts: Harvard University Press; 2014.
Siso MG. The biotechnological utilization of cheese whey: A review. Bioresour Technol. 1996; 57: 1-11.
Walsh PM. Haas MJ. Somkuti GA. Genetic construction of lactose-utilizing Xanthomonas campestris. Appl Environ Microb.1984; 47(2): 253.
Jeeva S. Selva Mohan T. Palavesam A. Isolation and mutagenesis of Xanthomonas sp. Selection of strains with enhanced xanthan production. AARJMD. 2014; 1(24):272-282.
Palaniraj A. and Jayaraman V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J food engineer. 2011; 106:1-11.
Niknezhad SV. Asadollahi MA. Zamani A. Biria D and Doostmohamadi M. Optimization of xanthan gum production using cheese whey and response surface methodology. Food Sci Biotechnol. 2015; 24(2): 453-460.
Ashraf S. Soudi MR. Sadeghizadeh M. Xanthomonas of a novel mutated strain of Xanthomonas campestris for xanthan production using whey as the sole substrate. Afric J Microbiol. 2008; 3(11): 438 – 442.
Ramezani A. Jafari M. Goodarzi T. Alavi SM. Salmanian AH. Azin M. Lactose consuming strains of Xanthomonas citri subsp. citri (Xcc) insight into the emergence of natural field resources for xanthan gum production. World J Microbiol Biotechnol. 2014; 30(5):1511-1517.
Ghazi SH. Azin M. Akhavan Sepahi A. Over production of xylanase from Bacillus mojavensis by classical mutagenesis. Biol J Micro. 2014; 11:21-36.
Silva MF. Fornari RCG. Mazutti M de Oliveira D. Padilha FF. Cichoski AJ. Cansian RL. Di Luccio M. Treichel H. 2009. Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Engin. 90: 119-123.
da Silva JA. Cardoso LG. de Jesus Assis D. Gomes JVP. Oliveira MBPP. de Souza OC. et al. Xanthan Gum Production by Xanthomonas campestris pv. campestris IBSBF 1866 and 1867 from Lignocellulose Agro industrial Wastes. Appl Biochem Biotechnol. 2018; 1-14.
Miller JH. Experiments in Molecular Genetics. New York: Cold Spring Harbor Laboratory Press; 1972.
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chemist. 1959; 31: 426-428.
Coughlin JR. Nickerson TA. Acid-Catalyzed Hydrolysis of Lactose in Whey and Aqueous Solutions. J dairy sci. 1977; 58 (2):169-174.
Kerdsup P. Tantratian S. Sanguandeekul R. Imjongjirak C. Xanthan production by mutant strain of Xanthomonas campestris TISTR 840 in Raw Cassava Starch Medium. Food Biopro Technol.2011; 4:1459–1462.
Mabrouk MEM. El Ahwany AMD Beliah MMB. Sabri SA. Xanthan production by a novel mutant strain of Xanthomonas campestris: Application of statistical design for optimization of process parameters. Life sci J. 2013; 10(1):1660-1667.
Thein A. Prathuangwong S. Novel strains of Xanthomonas oryzae pv. oryzae UV mutated induce systemic resistance in rice against bacterial leaf blight disease. Kasersart J. 2010; 44: 1026-43.
Kamal F. Mehrgan H. Mazaheri Assadi M. and Mortazavi SA. Mutagenesis of Xanthomonas campestris and Selection of Strains with Enhanced Xanthan Production. Iran biomed J. 2003; 7(3):91-98.
Rodriguez H. Aguilar L. and Lao M. Variations in xanthan production by antibiotic-resistant mutants of Xanthomonas campestris. Appl microbiol biotechnol.1997; 48(5):.626–629.
Thorne L. Tansey L. Pollock TJ. Direct utilization of lactose in clarified cheese whey for xanthan gum synthesis by Xanthomonas campestris. J Indust Microbial Biotechnol. 1988; 3(5), 321–32.
Yang TC. Wu GH. Tseng YH. Isolation of a Xanthomonas campestris strain with elevated beta-galactosidase activity for direct use of lactose in xanthan gum production. Lett appl Microbiol. 2002; 35(5):375–379.
Moravej R. Alavi SM. Azin M. and Salmanian AH. Production and physicochemical characterization of xanthan gum by native lactose consuming isolates of Xanthomonas citri subsp. citri. Ukr. Bichem. J. 2020; 92(1):92-102.
_||_
Donot F. Fontana A. Baccou JC. Galindo S. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym. 2012; 87: 951-962.
Garcia-Ochoa F. Santos VE. Casas JA. Gomez E. Xanthan gum: production, recovery, and properties. Biotechnol Adv. 2000; 18(7): 549–579.
Hauben L. Vauterin L. Swings J. and Moore ER. Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int J sys bacteriol. 1997; 47(2):328–335.
Fu JF. Tseng YH. Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl Environ Microb.1990; 56: 919-923.
Miller GD. Handbook of Dairy Foods and Nutrition. 3rd ed. CRC Press; 2006.
Wiley AS. Cultures of Milk: The Biology and Meaning of Dairy Products in the United States and India. 1st ed. Massachusetts: Harvard University Press; 2014.
Siso MG. The biotechnological utilization of cheese whey: A review. Bioresour Technol. 1996; 57: 1-11.
Walsh PM. Haas MJ. Somkuti GA. Genetic construction of lactose-utilizing Xanthomonas campestris. Appl Environ Microb.1984; 47(2): 253.
Jeeva S. Selva Mohan T. Palavesam A. Isolation and mutagenesis of Xanthomonas sp. Selection of strains with enhanced xanthan production. AARJMD. 2014; 1(24):272-282.
Palaniraj A. and Jayaraman V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J food engineer. 2011; 106:1-11.
Niknezhad SV. Asadollahi MA. Zamani A. Biria D and Doostmohamadi M. Optimization of xanthan gum production using cheese whey and response surface methodology. Food Sci Biotechnol. 2015; 24(2): 453-460.
Ashraf S. Soudi MR. Sadeghizadeh M. Xanthomonas of a novel mutated strain of Xanthomonas campestris for xanthan production using whey as the sole substrate. Afric J Microbiol. 2008; 3(11): 438 – 442.
Ramezani A. Jafari M. Goodarzi T. Alavi SM. Salmanian AH. Azin M. Lactose consuming strains of Xanthomonas citri subsp. citri (Xcc) insight into the emergence of natural field resources for xanthan gum production. World J Microbiol Biotechnol. 2014; 30(5):1511-1517.
Ghazi SH. Azin M. Akhavan Sepahi A. Over production of xylanase from Bacillus mojavensis by classical mutagenesis. Biol J Micro. 2014; 11:21-36.
Silva MF. Fornari RCG. Mazutti M de Oliveira D. Padilha FF. Cichoski AJ. Cansian RL. Di Luccio M. Treichel H. 2009. Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Engin. 90: 119-123.
da Silva JA. Cardoso LG. de Jesus Assis D. Gomes JVP. Oliveira MBPP. de Souza OC. et al. Xanthan Gum Production by Xanthomonas campestris pv. campestris IBSBF 1866 and 1867 from Lignocellulose Agro industrial Wastes. Appl Biochem Biotechnol. 2018; 1-14.
Miller JH. Experiments in Molecular Genetics. New York: Cold Spring Harbor Laboratory Press; 1972.
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chemist. 1959; 31: 426-428.
Coughlin JR. Nickerson TA. Acid-Catalyzed Hydrolysis of Lactose in Whey and Aqueous Solutions. J dairy sci. 1977; 58 (2):169-174.
Kerdsup P. Tantratian S. Sanguandeekul R. Imjongjirak C. Xanthan production by mutant strain of Xanthomonas campestris TISTR 840 in Raw Cassava Starch Medium. Food Biopro Technol.2011; 4:1459–1462.
Mabrouk MEM. El Ahwany AMD Beliah MMB. Sabri SA. Xanthan production by a novel mutant strain of Xanthomonas campestris: Application of statistical design for optimization of process parameters. Life sci J. 2013; 10(1):1660-1667.
Thein A. Prathuangwong S. Novel strains of Xanthomonas oryzae pv. oryzae UV mutated induce systemic resistance in rice against bacterial leaf blight disease. Kasersart J. 2010; 44: 1026-43.
Kamal F. Mehrgan H. Mazaheri Assadi M. and Mortazavi SA. Mutagenesis of Xanthomonas campestris and Selection of Strains with Enhanced Xanthan Production. Iran biomed J. 2003; 7(3):91-98.
Rodriguez H. Aguilar L. and Lao M. Variations in xanthan production by antibiotic-resistant mutants of Xanthomonas campestris. Appl microbiol biotechnol.1997; 48(5):.626–629.
Thorne L. Tansey L. Pollock TJ. Direct utilization of lactose in clarified cheese whey for xanthan gum synthesis by Xanthomonas campestris. J Indust Microbial Biotechnol. 1988; 3(5), 321–32.
Yang TC. Wu GH. Tseng YH. Isolation of a Xanthomonas campestris strain with elevated beta-galactosidase activity for direct use of lactose in xanthan gum production. Lett appl Microbiol. 2002; 35(5):375–379.
Moravej R. Alavi SM. Azin M. and Salmanian AH. Production and physicochemical characterization of xanthan gum by native lactose consuming isolates of Xanthomonas citri subsp. citri. Ukr. Bichem. J. 2020; 92(1):92-102.