Evaluation of antimicrobial and anticancer effects of silver nanoparticles synthesized by extracts of chamomile (Matricaria parthenium)
Subject Areas :
Microbial Biotechnology
shabnam shamaei
1
*
,
Faezeh Bashiri Goodarzi
2
1 - Department of Chemistry - Faculty of Basic Sciences - Islamic Azad University, Khorramabad Branch - Iran
2 - Department of Chemistry - Faculty of Basic Sciences - Islamic Azad University, Khorramabad Branch - Iran
Received: 2023-02-20
Accepted : 2023-08-16
Published : 2023-09-06
Keywords:
nanoparticles,
Chamomile,
Neoplasms,
Keywords: Anti-Bacterial Agents,
Abstract :
Background &Objectives: Silver nanoparticles have been widely used due to their anti-bacterial activities and anticancer properties. The aim of this study was to investigate the antimicrobial effects and cell toxicity of silver nanoparticles synthesized using extracts of chamomile on three neoplastic cell lines (A549, MCF-7 and HeLa).
Materials & Methods: Silver nanoparticles were biologically synthesized using extracts of chamomile. After physical and chemical evaluation of the synthesized nanoparticles, their antimicrobial properties were estimated on Escherichia coli and Staphylococcus aureus. Finally, the inhibitory effect of synthesized nanoparticles evaluated by using MTT technique on 3 neoplastic cell lines.
Results: The average size of nanoparticles synthesized by the extract of chamomile were 19 nm. The synthesized nanoparticles could have a significant inhibitory and lethal effect on the two named bacteria. silver nanoparticles were able to show a 50% inhibitory effect on different cell lines at a concentration of 50 μg/ml.
Conclusion: Based on the results, it can be stated that medicinal plants can be used in the successful biosynthesis of silver nanoparticles. After human studies and tests, chamomile-based silver nanoparticles can be used as effective therapeutic agent in the treatment of some cancers due to their coating of effective secondary metabolites and the release of silver ions (Ag+).
References:
References
Zewde B, Ambaye A, Stubbs J. A review of stabilized silver nanoparticles–synthesis, biological properties, characterization, and potential areas of applications. JSM Nanotechnology and Nanomedicine. (2016); 4(2): 1043.
Hasan S. A review on nanoparticles: their synthesis and types biosynthesis. Mechanism. (2015);4: 9–11.
Bahar Yaqoob S, Adnan R, Rameez Khan R.M, Rashid M. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Frontiers in Chemistry. (2020);8: 376.
Mu W, Chu Q, Liu Y, Zhang N. A review on Nano‑based drug delivery system for cancer chemo immunotherapy. Nano-Micro Letters. (2020);12:142.
Sharma A, Goyal A.K, Rath G. Recent advances in metal nanoparticles in cancer therapy, Journal of Drug Target. (2018); 8: 617-632.
Iqbal S, Fakher-e-Alam M, Akbar F, Shafiq M, Atif M, Amin N. Application of silver oxide nanoparticles for the treatment of cancer. Journal of Molecular Structure. (2019);1189: 203-209.
Yin I.X, Zhang J, Zhao I, Mei M.L, Li Q, Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine. (2020);15: 2555–2562.
Wang L, H.u C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. (2017);12: 1227–1249.
Baranwal A, Srivastava A, Kumar P, Bajpai V.K, Maurya P.K, Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiology. (2018);9: 422.
Fernando S.S.N, Gunasekara T.D.C.P, Holton J. Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases. (2018); 8 (1): 2-11.
Liao S, Zhang Y, Pan X, Zhu F, Jiang O, Liu Q. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. International Journal of Nanomedicine. (2019);14: 1469–1487.
Raj-Meena H.P, Singh A.P, Tejavath K.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and ant proliferative activity against cancer cell lines. ACS Omega. (2020); 5: 5520−5528.
Roy A, Bulut O, Some S, Kumar Mandal A, Yilmaz M.D. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances. (2019);9: 2673–2702.
Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry. (2015); 12: 3576–3600.
Alharbi N.S, Alsubhi N.S, Felimban A.L. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences(2022):109-124.
Gerlier D, Thomasset N. Use of MTT colorimetric assay to measure cell activation. Journal of Immunology Methods. (1986);94(1-2):5763.
Al-Sufyani N.M,Hussien N.A,Hawsawi Y.M. Characterization and anticancer potential of silver nanoparticles biosynthesized from Olea chrysophylla and Lavandula dentata leaf extracts on HCT116 colon cancer cells. Journal of Nanomaterials. (2019):7361695.
Devi S.J, Bhimba B.V. Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca Invitro. Science Reports. (2012); 1(4):1-5.
18-Iqbal S, Fakher-e-Alam M, Akbar F, Shafiq M, Atif M, Amin N. Application of silver oxide nanoparticles for the treatment of cancer. Journal of Molecular Structure. (2019);1189: 203-209.
Ruíz-Baltazar A.J, Reyes-López S.Y, Larrañaga D, Estévez M, Pérez R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results in Physics. (2017);7: 639–2643.
Negahdary M, Omidi S, Eghbali-Zarch A, Mousavi S.A, Mohseni G, Moradpour Y. Plant synthesis of silver nanoparticles using Matricaria chamomilla plant and evaluation of its antibacterial and antifungal effects. Biomedical Research. (2015); 26(4): 794-799.
Pirtarighat S , Ghannadnia M , Baghshahi, S. Antimicrobial effects of green synthesized silver nanoparticles using Melissa officinalis grown under in vitro condition. Nanomedical Journal. (2017);4(3): 184-190.
Blair M.A, Webber M.A, Baylay A.J, Ogbolu D.O, Piddock L.J.C. Molecular mechanisms of antibiotic resistance. Nature Review. (2015); 13: 42-51.
zamani kochesfehani M. Ataei jaliseh S. zamani kochesfehani M H. Antibacterial effect of silver nanoparticles synthesized from the red algae Gracilaria gracilis . Journal of Microbial World 2021, 13(4): 369-378.
Zarrin V. Taherizadeh M. Tanideh N. Talaei-Khozani T. The effect of Sargassum muticum hot water and ethanolic extracts on intestinal microbiota in obese male rats. Journal of Microbial World 2022, 15(2): 134-146.
Omidi Nasab M. Aeini M. Characterization and antibacterial activity of the chemical essential oil of Foeniculum vulgare and Eucalyptus to control some important plant pathogenic bacteria. Journal of Microbial World 2020, 12(4): 393-399.
Lee S.H, Jun B.H. Silver nanoparticles: synthesis and application for nanomedicine. International Journal of Molecular Science. (2019);20: 865.
Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán L.M. Current challenges toward in vitro cellular validation of inorganic nanoparticles. Bioconjugate Chemistry. (2017); 28(1): 212-221.
Datta P.K, Sandeep A, Sonu A. Anti-proliferative effect of silver nanoparticles in HeLa cells due to enhanced oxidative stress. Research Journal of Biotechnology. (2018);13(2): 68-74.
11-Fierascu I, Georgiev M.I, Ortan A, Fierascu R.C, Avramescu S.C, Ionescu D. Phyto-mediated metallic nanoarchitectures via Melissa officinalis L.: synthesis, characterization and biological properties. Scientific Reports. (2018);7: 12428.
Dobrzynska I, Skrzydlewska E, Figaszewski Z. Changes in electric properties of human breast cancer cells. The Journal of Membrane Biology. (2012);246: 161–166.
Jeong J, Gurunathan S., Kang M. Hypoxiamediated autophagic flux inhibits silver nanoparticle- triggered apoptosis in human lung cancer cells. Science Reports. (2016); 6: 21668.
Ghate P, Prabhu S D, Murugesan G, Goveas L.C, Varadavenkatesan T, Vinayagam R. Chi N.T.L, Pugazhendhi A, Selvaraj R. Synthesis of hydroxyapatite nanoparticles using Acacia falcata leaf extract and study of their anti-cancerous activity against cancerous mammalian cell lines. Environmental Research(2022);2:113917
Gurunathan S, Kim E.S, Han J, Park J, Kim J.H. Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules. (2015); 20(12): 22476–22498.
Al‑Dabbagh B, Elhaty I.A, Elhaw M, Murali C. Al-Mansoori A, Amin A. Antioxidant and anticancer activities of chamomile (Matricaria recutita L.). BMC Research Notes. (2019); 12: 3.
Saraydin S.U, Tuncer E, Tepe B, Karadayi S, Özer H, Şen M. Antitumoral Effects of Melissa officinalis on Breast Cancer in Vitro and In Vivo. Asian Pacific Journal of Cancer Prevention. (2012);13: 2765-2770.
Souihi S, Ayed B.B, Trabelsi I, Khammassi M, Brahim N.B, Annabi M. Plant extract valorization of Melissa officinalis L. for agro industrial purposes through their biochemical properties and biological activities. Journal of Chemistry. (2020); 9728093.
Srivastava J.M, Gupta S. Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. Journal of Agriculture and Food Chemistry. (2007); 55(23): 9470-9478.
Mittal A.K, Bhaumik J, Kumar S, Banerjee U.C. Biosynthesis of silver nanoparticles elucidation of prospective mechanism and therapeutic potential. Journal of Colloid Interface Science. (2014);2: 39-47.
_||_References
Zewde B, Ambaye A, Stubbs J. A review of stabilized silver nanoparticles–synthesis, biological properties, characterization, and potential areas of applications. JSM Nanotechnology and Nanomedicine. (2016); 4(2): 1043.
Hasan S. A review on nanoparticles: their synthesis and types biosynthesis. Mechanism. (2015);4: 9–11.
Bahar Yaqoob S, Adnan R, Rameez Khan R.M, Rashid M. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Frontiers in Chemistry. (2020);8: 376.
Mu W, Chu Q, Liu Y, Zhang N. A review on Nano‑based drug delivery system for cancer chemo immunotherapy. Nano-Micro Letters. (2020);12:142.
Sharma A, Goyal A.K, Rath G. Recent advances in metal nanoparticles in cancer therapy, Journal of Drug Target. (2018); 8: 617-632.
Iqbal S, Fakher-e-Alam M, Akbar F, Shafiq M, Atif M, Amin N. Application of silver oxide nanoparticles for the treatment of cancer. Journal of Molecular Structure. (2019);1189: 203-209.
Yin I.X, Zhang J, Zhao I, Mei M.L, Li Q, Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine. (2020);15: 2555–2562.
Wang L, H.u C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. (2017);12: 1227–1249.
Baranwal A, Srivastava A, Kumar P, Bajpai V.K, Maurya P.K, Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiology. (2018);9: 422.
Fernando S.S.N, Gunasekara T.D.C.P, Holton J. Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases. (2018); 8 (1): 2-11.
Liao S, Zhang Y, Pan X, Zhu F, Jiang O, Liu Q. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. International Journal of Nanomedicine. (2019);14: 1469–1487.
Raj-Meena H.P, Singh A.P, Tejavath K.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and ant proliferative activity against cancer cell lines. ACS Omega. (2020); 5: 5520−5528.
Roy A, Bulut O, Some S, Kumar Mandal A, Yilmaz M.D. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances. (2019);9: 2673–2702.
Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry. (2015); 12: 3576–3600.
Alharbi N.S, Alsubhi N.S, Felimban A.L. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences(2022):109-124.
Gerlier D, Thomasset N. Use of MTT colorimetric assay to measure cell activation. Journal of Immunology Methods. (1986);94(1-2):5763.
Al-Sufyani N.M,Hussien N.A,Hawsawi Y.M. Characterization and anticancer potential of silver nanoparticles biosynthesized from Olea chrysophylla and Lavandula dentata leaf extracts on HCT116 colon cancer cells. Journal of Nanomaterials. (2019):7361695.
Devi S.J, Bhimba B.V. Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca Invitro. Science Reports. (2012); 1(4):1-5.
18-Iqbal S, Fakher-e-Alam M, Akbar F, Shafiq M, Atif M, Amin N. Application of silver oxide nanoparticles for the treatment of cancer. Journal of Molecular Structure. (2019);1189: 203-209.
Ruíz-Baltazar A.J, Reyes-López S.Y, Larrañaga D, Estévez M, Pérez R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results in Physics. (2017);7: 639–2643.
Negahdary M, Omidi S, Eghbali-Zarch A, Mousavi S.A, Mohseni G, Moradpour Y. Plant synthesis of silver nanoparticles using Matricaria chamomilla plant and evaluation of its antibacterial and antifungal effects. Biomedical Research. (2015); 26(4): 794-799.
Pirtarighat S , Ghannadnia M , Baghshahi, S. Antimicrobial effects of green synthesized silver nanoparticles using Melissa officinalis grown under in vitro condition. Nanomedical Journal. (2017);4(3): 184-190.
Blair M.A, Webber M.A, Baylay A.J, Ogbolu D.O, Piddock L.J.C. Molecular mechanisms of antibiotic resistance. Nature Review. (2015); 13: 42-51.
zamani kochesfehani M. Ataei jaliseh S. zamani kochesfehani M H. Antibacterial effect of silver nanoparticles synthesized from the red algae Gracilaria gracilis . Journal of Microbial World 2021, 13(4): 369-378.
Zarrin V. Taherizadeh M. Tanideh N. Talaei-Khozani T. The effect of Sargassum muticum hot water and ethanolic extracts on intestinal microbiota in obese male rats. Journal of Microbial World 2022, 15(2): 134-146.
Omidi Nasab M. Aeini M. Characterization and antibacterial activity of the chemical essential oil of Foeniculum vulgare and Eucalyptus to control some important plant pathogenic bacteria. Journal of Microbial World 2020, 12(4): 393-399.
Lee S.H, Jun B.H. Silver nanoparticles: synthesis and application for nanomedicine. International Journal of Molecular Science. (2019);20: 865.
Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán L.M. Current challenges toward in vitro cellular validation of inorganic nanoparticles. Bioconjugate Chemistry. (2017); 28(1): 212-221.
Datta P.K, Sandeep A, Sonu A. Anti-proliferative effect of silver nanoparticles in HeLa cells due to enhanced oxidative stress. Research Journal of Biotechnology. (2018);13(2): 68-74.
11-Fierascu I, Georgiev M.I, Ortan A, Fierascu R.C, Avramescu S.C, Ionescu D. Phyto-mediated metallic nanoarchitectures via Melissa officinalis L.: synthesis, characterization and biological properties. Scientific Reports. (2018);7: 12428.
Dobrzynska I, Skrzydlewska E, Figaszewski Z. Changes in electric properties of human breast cancer cells. The Journal of Membrane Biology. (2012);246: 161–166.
Jeong J, Gurunathan S., Kang M. Hypoxiamediated autophagic flux inhibits silver nanoparticle- triggered apoptosis in human lung cancer cells. Science Reports. (2016); 6: 21668.
Ghate P, Prabhu S D, Murugesan G, Goveas L.C, Varadavenkatesan T, Vinayagam R. Chi N.T.L, Pugazhendhi A, Selvaraj R. Synthesis of hydroxyapatite nanoparticles using Acacia falcata leaf extract and study of their anti-cancerous activity against cancerous mammalian cell lines. Environmental Research(2022);2:113917
Gurunathan S, Kim E.S, Han J, Park J, Kim J.H. Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules. (2015); 20(12): 22476–22498.
Al‑Dabbagh B, Elhaty I.A, Elhaw M, Murali C. Al-Mansoori A, Amin A. Antioxidant and anticancer activities of chamomile (Matricaria recutita L.). BMC Research Notes. (2019); 12: 3.
Saraydin S.U, Tuncer E, Tepe B, Karadayi S, Özer H, Şen M. Antitumoral Effects of Melissa officinalis on Breast Cancer in Vitro and In Vivo. Asian Pacific Journal of Cancer Prevention. (2012);13: 2765-2770.
Souihi S, Ayed B.B, Trabelsi I, Khammassi M, Brahim N.B, Annabi M. Plant extract valorization of Melissa officinalis L. for agro industrial purposes through their biochemical properties and biological activities. Journal of Chemistry. (2020); 9728093.
Srivastava J.M, Gupta S. Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. Journal of Agriculture and Food Chemistry. (2007); 55(23): 9470-9478.
Mittal A.K, Bhaumik J, Kumar S, Banerjee U.C. Biosynthesis of silver nanoparticles elucidation of prospective mechanism and therapeutic potential. Journal of Colloid Interface Science. (2014);2: 39-47.