بررسی اثرات ضد میکروبی و ضدسرطانی نانوذرات نقره سنتز شده توسط عصاره گیاه دارویی بابونه گاوی
محورهای موضوعی :
زیست فناوری میکروبی
شبنم شماعی
1
*
,
فائزه بشیری گودرزی
2
1 - گروه شیمی -دانشکده علوم پایه - دانشگاه آزاد اسلامی واحد خرم آباد - ایران
2 - گروه شیمی -دانشکده علوم پایه - دانشگاه آزاد اسلامی واحد خرم آباد - ایران
تاریخ دریافت : 1401/12/01
تاریخ پذیرش : 1402/05/25
تاریخ انتشار : 1402/06/15
کلید واژه:
سرطان,
بابونه,
نانوذرات,
آنتیبیوتیک,
بیوسنتز,
چکیده مقاله :
سابقه و هدف: نانوذرات نقره با خواص ضدمیکروبی و ضدسرطانی، موارد استفاده فراوانی پیدا کردهاند. در این مطالعه بررسی اثرات ضدمیکروبی و سمیت سلولی نانوذرات نقره سنتز شده با استفاده از عصاره گیاه دارویی بابونه گاوی، بر روی 3 رده سلول سرطانی (A549, MCF-7 و HeLa) مورد بررسی قرار گرفت.
مواد و روشها: نانوذرات نقره بهروش زیستی با استفاده از عصاره گیاه دارویی بابونه سنتز شد. پس از ارزیابی فیزیکی و شیمیایی این نانوذرات، خواص ضدمیکروبی آنها بر روی دو باکتری اشریشیا کلی و استافیلوکوکوس اورئوس برآورد گردید. در نهایت اثر مهاری نانوذرات سنتز شده با استفاده از تکنیک MTT بر روی 3 رده سلول سرطانی ارزیابی شد.
یافتهها: میانگین اندازه نانوذرات سنتز شده توسط عصاره بابونه 19 نانومتر بود. نانوذرات سنتز شده توانستند اثر مهاری و کشندگی معنیداری بر روی این دو باکتری داشته باشند. این نانوذرات توانستند با غلظت 50 میکروگرم در میلیلیتر بیش از 50 درصد اثر مهاری بر روی ردههای سلولی مختلف نشان دهند.
نتیجهگیری: گیاه دارویی بابونه گاوی میتواند در سنتز موفق نانوذرات زیستی نقره مورد استفاده قرار گیرد. نانوذرات نقره سنتز شده بهدلیل داشتن پوششی از متابولیتهای ثانویه موثر و آزادسازی یونهای نقره (Ag+)، پس از انجام بررسیها و آزمونهای انسانی میتوانند بهعنوان عوامل درمانی موثر در درمان انواع سرطان مورد استفاده قرار گیرند.
چکیده انگلیسی:
Background &Objectives: Silver nanoparticles have been widely used due to their anti-bacterial activities and anticancer properties. The aim of this study was to investigate the antimicrobial effects and cell toxicity of silver nanoparticles synthesized using extracts of chamomile on three neoplastic cell lines (A549, MCF-7 and HeLa).
Materials & Methods: Silver nanoparticles were biologically synthesized using extracts of chamomile. After physical and chemical evaluation of the synthesized nanoparticles, their antimicrobial properties were estimated on Escherichia coli and Staphylococcus aureus. Finally, the inhibitory effect of synthesized nanoparticles evaluated by using MTT technique on 3 neoplastic cell lines.
Results: The average size of nanoparticles synthesized by the extract of chamomile were 19 nm. The synthesized nanoparticles could have a significant inhibitory and lethal effect on the two named bacteria. silver nanoparticles were able to show a 50% inhibitory effect on different cell lines at a concentration of 50 μg/ml.
Conclusion: Based on the results, it can be stated that medicinal plants can be used in the successful biosynthesis of silver nanoparticles. After human studies and tests, chamomile-based silver nanoparticles can be used as effective therapeutic agent in the treatment of some cancers due to their coating of effective secondary metabolites and the release of silver ions (Ag+).
منابع و مأخذ:
References
Zewde B, Ambaye A, Stubbs J. A review of stabilized silver nanoparticles–synthesis, biological properties, characterization, and potential areas of applications. JSM Nanotechnology and Nanomedicine. (2016); 4(2): 1043.
Hasan S. A review on nanoparticles: their synthesis and types biosynthesis. Mechanism. (2015);4: 9–11.
Bahar Yaqoob S, Adnan R, Rameez Khan R.M, Rashid M. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Frontiers in Chemistry. (2020);8: 376.
Mu W, Chu Q, Liu Y, Zhang N. A review on Nano‑based drug delivery system for cancer chemo immunotherapy. Nano-Micro Letters. (2020);12:142.
Sharma A, Goyal A.K, Rath G. Recent advances in metal nanoparticles in cancer therapy, Journal of Drug Target. (2018); 8: 617-632.
Iqbal S, Fakher-e-Alam M, Akbar F, Shafiq M, Atif M, Amin N. Application of silver oxide nanoparticles for the treatment of cancer. Journal of Molecular Structure. (2019);1189: 203-209.
Yin I.X, Zhang J, Zhao I, Mei M.L, Li Q, Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine. (2020);15: 2555–2562.
Wang L, H.u C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. (2017);12: 1227–1249.
Baranwal A, Srivastava A, Kumar P, Bajpai V.K, Maurya P.K, Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiology. (2018);9: 422.
Fernando S.S.N, Gunasekara T.D.C.P, Holton J. Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases. (2018); 8 (1): 2-11.
Liao S, Zhang Y, Pan X, Zhu F, Jiang O, Liu Q. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. International Journal of Nanomedicine. (2019);14: 1469–1487.
Raj-Meena H.P, Singh A.P, Tejavath K.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and ant proliferative activity against cancer cell lines. ACS Omega. (2020); 5: 5520−5528.
Roy A, Bulut O, Some S, Kumar Mandal A, Yilmaz M.D. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances. (2019);9: 2673–2702.
Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry. (2015); 12: 3576–3600.
Alharbi N.S, Alsubhi N.S, Felimban A.L. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences(2022):109-124.
Gerlier D, Thomasset N. Use of MTT colorimetric assay to measure cell activation. Journal of Immunology Methods. (1986);94(1-2):5763.
Al-Sufyani N.M,Hussien N.A,Hawsawi Y.M. Characterization and anticancer potential of silver nanoparticles biosynthesized from Olea chrysophylla and Lavandula dentata leaf extracts on HCT116 colon cancer cells. Journal of Nanomaterials. (2019):7361695.
Devi S.J, Bhimba B.V. Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca Invitro. Science Reports. (2012); 1(4):1-5.
18-Iqbal S, Fakher-e-Alam M, Akbar F, Shafiq M, Atif M, Amin N. Application of silver oxide nanoparticles for the treatment of cancer. Journal of Molecular Structure. (2019);1189: 203-209.
Ruíz-Baltazar A.J, Reyes-López S.Y, Larrañaga D, Estévez M, Pérez R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results in Physics. (2017);7: 639–2643.
Negahdary M, Omidi S, Eghbali-Zarch A, Mousavi S.A, Mohseni G, Moradpour Y. Plant synthesis of silver nanoparticles using Matricaria chamomilla plant and evaluation of its antibacterial and antifungal effects. Biomedical Research. (2015); 26(4): 794-799.
Pirtarighat S , Ghannadnia M , Baghshahi, S. Antimicrobial effects of green synthesized silver nanoparticles using Melissa officinalis grown under in vitro condition. Nanomedical Journal. (2017);4(3): 184-190.
Blair M.A, Webber M.A, Baylay A.J, Ogbolu D.O, Piddock L.J.C. Molecular mechanisms of antibiotic resistance. Nature Review. (2015); 13: 42-51.
zamani kochesfehani M. Ataei jaliseh S. zamani kochesfehani M H. Antibacterial effect of silver nanoparticles synthesized from the red algae Gracilaria gracilis . Journal of Microbial World 2021, 13(4): 369-378.
Zarrin V. Taherizadeh M. Tanideh N. Talaei-Khozani T. The effect of Sargassum muticum hot water and ethanolic extracts on intestinal microbiota in obese male rats. Journal of Microbial World 2022, 15(2): 134-146.
Omidi Nasab M. Aeini M. Characterization and antibacterial activity of the chemical essential oil of Foeniculum vulgare and Eucalyptus to control some important plant pathogenic bacteria. Journal of Microbial World 2020, 12(4): 393-399.
Lee S.H, Jun B.H. Silver nanoparticles: synthesis and application for nanomedicine. International Journal of Molecular Science. (2019);20: 865.
Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán L.M. Current challenges toward in vitro cellular validation of inorganic nanoparticles. Bioconjugate Chemistry. (2017); 28(1): 212-221.
Datta P.K, Sandeep A, Sonu A. Anti-proliferative effect of silver nanoparticles in HeLa cells due to enhanced oxidative stress. Research Journal of Biotechnology. (2018);13(2): 68-74.
11-Fierascu I, Georgiev M.I, Ortan A, Fierascu R.C, Avramescu S.C, Ionescu D. Phyto-mediated metallic nanoarchitectures via Melissa officinalis L.: synthesis, characterization and biological properties. Scientific Reports. (2018);7: 12428.
Dobrzynska I, Skrzydlewska E, Figaszewski Z. Changes in electric properties of human breast cancer cells. The Journal of Membrane Biology. (2012);246: 161–166.
Jeong J, Gurunathan S., Kang M. Hypoxiamediated autophagic flux inhibits silver nanoparticle- triggered apoptosis in human lung cancer cells. Science Reports. (2016); 6: 21668.
Ghate P, Prabhu S D, Murugesan G, Goveas L.C, Varadavenkatesan T, Vinayagam R. Chi N.T.L, Pugazhendhi A, Selvaraj R. Synthesis of hydroxyapatite nanoparticles using Acacia falcata leaf extract and study of their anti-cancerous activity against cancerous mammalian cell lines. Environmental Research(2022);2:113917
Gurunathan S, Kim E.S, Han J, Park J, Kim J.H. Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules. (2015); 20(12): 22476–22498.
Al‑Dabbagh B, Elhaty I.A, Elhaw M, Murali C. Al-Mansoori A, Amin A. Antioxidant and anticancer activities of chamomile (Matricaria recutita L.). BMC Research Notes. (2019); 12: 3.
Saraydin S.U, Tuncer E, Tepe B, Karadayi S, Özer H, Şen M. Antitumoral Effects of Melissa officinalis on Breast Cancer in Vitro and In Vivo. Asian Pacific Journal of Cancer Prevention. (2012);13: 2765-2770.
Souihi S, Ayed B.B, Trabelsi I, Khammassi M, Brahim N.B, Annabi M. Plant extract valorization of Melissa officinalis L. for agro industrial purposes through their biochemical properties and biological activities. Journal of Chemistry. (2020); 9728093.
Srivastava J.M, Gupta S. Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. Journal of Agriculture and Food Chemistry. (2007); 55(23): 9470-9478.
Mittal A.K, Bhaumik J, Kumar S, Banerjee U.C. Biosynthesis of silver nanoparticles elucidation of prospective mechanism and therapeutic potential. Journal of Colloid Interface Science. (2014);2: 39-47.
_||_References
Zewde B, Ambaye A, Stubbs J. A review of stabilized silver nanoparticles–synthesis, biological properties, characterization, and potential areas of applications. JSM Nanotechnology and Nanomedicine. (2016); 4(2): 1043.
Hasan S. A review on nanoparticles: their synthesis and types biosynthesis. Mechanism. (2015);4: 9–11.
Bahar Yaqoob S, Adnan R, Rameez Khan R.M, Rashid M. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Frontiers in Chemistry. (2020);8: 376.
Mu W, Chu Q, Liu Y, Zhang N. A review on Nano‑based drug delivery system for cancer chemo immunotherapy. Nano-Micro Letters. (2020);12:142.
Sharma A, Goyal A.K, Rath G. Recent advances in metal nanoparticles in cancer therapy, Journal of Drug Target. (2018); 8: 617-632.
Iqbal S, Fakher-e-Alam M, Akbar F, Shafiq M, Atif M, Amin N. Application of silver oxide nanoparticles for the treatment of cancer. Journal of Molecular Structure. (2019);1189: 203-209.
Yin I.X, Zhang J, Zhao I, Mei M.L, Li Q, Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine. (2020);15: 2555–2562.
Wang L, H.u C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. (2017);12: 1227–1249.
Baranwal A, Srivastava A, Kumar P, Bajpai V.K, Maurya P.K, Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiology. (2018);9: 422.
Fernando S.S.N, Gunasekara T.D.C.P, Holton J. Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases. (2018); 8 (1): 2-11.
Liao S, Zhang Y, Pan X, Zhu F, Jiang O, Liu Q. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. International Journal of Nanomedicine. (2019);14: 1469–1487.
Raj-Meena H.P, Singh A.P, Tejavath K.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and ant proliferative activity against cancer cell lines. ACS Omega. (2020); 5: 5520−5528.
Roy A, Bulut O, Some S, Kumar Mandal A, Yilmaz M.D. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances. (2019);9: 2673–2702.
Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry. (2015); 12: 3576–3600.
Alharbi N.S, Alsubhi N.S, Felimban A.L. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences(2022):109-124.
Gerlier D, Thomasset N. Use of MTT colorimetric assay to measure cell activation. Journal of Immunology Methods. (1986);94(1-2):5763.
Al-Sufyani N.M,Hussien N.A,Hawsawi Y.M. Characterization and anticancer potential of silver nanoparticles biosynthesized from Olea chrysophylla and Lavandula dentata leaf extracts on HCT116 colon cancer cells. Journal of Nanomaterials. (2019):7361695.
Devi S.J, Bhimba B.V. Anticancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca Invitro. Science Reports. (2012); 1(4):1-5.
18-Iqbal S, Fakher-e-Alam M, Akbar F, Shafiq M, Atif M, Amin N. Application of silver oxide nanoparticles for the treatment of cancer. Journal of Molecular Structure. (2019);1189: 203-209.
Ruíz-Baltazar A.J, Reyes-López S.Y, Larrañaga D, Estévez M, Pérez R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results in Physics. (2017);7: 639–2643.
Negahdary M, Omidi S, Eghbali-Zarch A, Mousavi S.A, Mohseni G, Moradpour Y. Plant synthesis of silver nanoparticles using Matricaria chamomilla plant and evaluation of its antibacterial and antifungal effects. Biomedical Research. (2015); 26(4): 794-799.
Pirtarighat S , Ghannadnia M , Baghshahi, S. Antimicrobial effects of green synthesized silver nanoparticles using Melissa officinalis grown under in vitro condition. Nanomedical Journal. (2017);4(3): 184-190.
Blair M.A, Webber M.A, Baylay A.J, Ogbolu D.O, Piddock L.J.C. Molecular mechanisms of antibiotic resistance. Nature Review. (2015); 13: 42-51.
zamani kochesfehani M. Ataei jaliseh S. zamani kochesfehani M H. Antibacterial effect of silver nanoparticles synthesized from the red algae Gracilaria gracilis . Journal of Microbial World 2021, 13(4): 369-378.
Zarrin V. Taherizadeh M. Tanideh N. Talaei-Khozani T. The effect of Sargassum muticum hot water and ethanolic extracts on intestinal microbiota in obese male rats. Journal of Microbial World 2022, 15(2): 134-146.
Omidi Nasab M. Aeini M. Characterization and antibacterial activity of the chemical essential oil of Foeniculum vulgare and Eucalyptus to control some important plant pathogenic bacteria. Journal of Microbial World 2020, 12(4): 393-399.
Lee S.H, Jun B.H. Silver nanoparticles: synthesis and application for nanomedicine. International Journal of Molecular Science. (2019);20: 865.
Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán L.M. Current challenges toward in vitro cellular validation of inorganic nanoparticles. Bioconjugate Chemistry. (2017); 28(1): 212-221.
Datta P.K, Sandeep A, Sonu A. Anti-proliferative effect of silver nanoparticles in HeLa cells due to enhanced oxidative stress. Research Journal of Biotechnology. (2018);13(2): 68-74.
11-Fierascu I, Georgiev M.I, Ortan A, Fierascu R.C, Avramescu S.C, Ionescu D. Phyto-mediated metallic nanoarchitectures via Melissa officinalis L.: synthesis, characterization and biological properties. Scientific Reports. (2018);7: 12428.
Dobrzynska I, Skrzydlewska E, Figaszewski Z. Changes in electric properties of human breast cancer cells. The Journal of Membrane Biology. (2012);246: 161–166.
Jeong J, Gurunathan S., Kang M. Hypoxiamediated autophagic flux inhibits silver nanoparticle- triggered apoptosis in human lung cancer cells. Science Reports. (2016); 6: 21668.
Ghate P, Prabhu S D, Murugesan G, Goveas L.C, Varadavenkatesan T, Vinayagam R. Chi N.T.L, Pugazhendhi A, Selvaraj R. Synthesis of hydroxyapatite nanoparticles using Acacia falcata leaf extract and study of their anti-cancerous activity against cancerous mammalian cell lines. Environmental Research(2022);2:113917
Gurunathan S, Kim E.S, Han J, Park J, Kim J.H. Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules. (2015); 20(12): 22476–22498.
Al‑Dabbagh B, Elhaty I.A, Elhaw M, Murali C. Al-Mansoori A, Amin A. Antioxidant and anticancer activities of chamomile (Matricaria recutita L.). BMC Research Notes. (2019); 12: 3.
Saraydin S.U, Tuncer E, Tepe B, Karadayi S, Özer H, Şen M. Antitumoral Effects of Melissa officinalis on Breast Cancer in Vitro and In Vivo. Asian Pacific Journal of Cancer Prevention. (2012);13: 2765-2770.
Souihi S, Ayed B.B, Trabelsi I, Khammassi M, Brahim N.B, Annabi M. Plant extract valorization of Melissa officinalis L. for agro industrial purposes through their biochemical properties and biological activities. Journal of Chemistry. (2020); 9728093.
Srivastava J.M, Gupta S. Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. Journal of Agriculture and Food Chemistry. (2007); 55(23): 9470-9478.
Mittal A.K, Bhaumik J, Kumar S, Banerjee U.C. Biosynthesis of silver nanoparticles elucidation of prospective mechanism and therapeutic potential. Journal of Colloid Interface Science. (2014);2: 39-47.