Callebaut and H\"{o}lder type inequalities for positive linear maps of selfadjoint operators via a Kittaneh-Manasrah result
Subject Areas : Operator theory
1 - Applied Mathematics Research Group, ISILC, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australiaalia
Keywords: Positive linear maps, selfadjoint operators, functions of selfadjoint operators, Callebaut inequality, H\"{o}lder inequality,
Abstract :
Some inequalities of Callebaut and H\"{o}lder type for positive linear maps of continuous functions of selfadjoint linear operators in Hilbert spaces, are given. Applications for power function are provided as well.
[1] D. K. Callebaut, Generalization of Cauchy-Schwarz inequality, J. Math. Anal. Appl. 12 (1965), 491-494.
[2] M. D. Choi, Positive linear maps on C∗-algebras, Canad. J. Math. 24 (1972), 520-529.
[3] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 417-478.
[4] S. S. Dragomir, Cebysev type inequalities for positive linear maps of selfadjoint operators in Hilbert spaces, Math. Mora. 21 (1) (2017), 1-15.
[5] S. S. Dragomir, Grüss’ type inequalities for positive linear maps of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll. (2016), 19:62.
[6] S. S. Dragomir, Operator quasilinearity of some functionals associated to Davis-Choi-Jensen’s inequality for positive maps, Bull. Austral. Math. Soc. 95 (2) (2017), 322-332.
[7] S. S. Dragomir, Some Hermite-Hadamard type inequalities for operator convex functions and positive maps, Spec. Matrices. 7 (2019), 38-51.
[8] X. Fu, C. He, Some operator inequalities for positive linear maps, Linear Multilinear Algebra. 63 (3) (2015), 571-577.
[9] F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269
[10] F. Kittaneh, Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra. 59 (2011), 1031-1037.
[11] J. S. Matharu, M. S. Moslehian, Grüss inequality for some types of positive linear maps, J. Operator Theory. 73 (1) (2015), 265-278.
[12] H. R. Moradi, M. E. Omidvar, S. S. Dragomir, An operator extension ofˇCebyˇ sev inequality, An. St. Univ. Ovid. Cons. 25 (2) (2017), 135-147.
[13] H. R. Moradi, M. E. Omidvar, S. S. Dragomir, More operator inequalities for positive linear maps, Bull. Math. Anal. Appl. 9 (1) (2017), 65-73.
[14] M. Niezgoda, Shannon like inequalities for f-connections of positive linear maps and positive operators, Linear Algebra Appl. 481 (2015), 186-201.
[15] J. Pecaric, T. Furuta, J. MicicHot, Y. Seo, Mond-Pecaric Method in Operator Inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[16] R. Sharma, A. Thakur, More inequalities for positive linear maps, J. Math. Inequal. 7 (1) (2013), 1-9.
[17] J. Xue and X. Hu, Some generalizations of operator inequalities for positive linear maps, J. Inequal. Appl. (2016), 2016:27.
[18] P. Zhang, More operator inequalities for positive linear maps, Banach J. Math. Anal. 9 (1) (2015), 166-172.