A certain studies on Norlund summability of series
Subject Areas : Sequences, series, summability
1 - Department of Mathematics, MIT Campus, T.U. Janakpurdham, Nepal|Department of Mathematics, Rajarshi Janak Campus, T.U, Janakpurdham, 45600, Nepal
2 - Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Vellore, 632 014 Tamil Nadu, India
Keywords: Fourier series, Convergence and divergence, conjugate, summability,
Abstract :
In this paper, we have obtained two theorems for N\"orlund summability of Fourier series and their conjugate series under very general conditions. These two theorems are closely related to the great works of the analysts Patti \cite{20}, McFadden \cite{22} and Siddiqui \cite{23} but not the same.
[1] N. H. Abel, Undersuchungen über die rein 1 + mx m(m+1)/1.2x^2 + ..., Journal Für Die Reine und Angewandte Mathematik. (Crelles) L. (1826), 311-339.
[2] I. Canak, U. Totur, An alternative proof of a Tauberian theorem for Abel summability method, Proyecciones J. Math. 35 (3) (2016), 235-244.
[3] E. Cesàro, Surla multiplication des series, Bulletin des Scinces Math. 14 (1890), 114-120.
[4] M. Fekete, Vizgalatok a Fourier Souokroe, Mathematics Termesz Ertesitok. 34 (1916), 756-786.
[5] H. J. Hamilton, J. D. Hill, On strong summability, Amer. Math. J. 60 (1938), 588-594.
[6] G. H. Hardy, Divergent Series, The University Press, Oxford, 1949.
[7] G. H. Hardy, J. E. Littlewood, Sur La series de Fourier dune function a Eorre summable computes, Rendus del Academic Des Science. 156 (1913), 1307-1309.
[8] G. H. Hardy, J. E. Littlewood, The strong summability of Fourier series, Found. Math. 25 (1935), 162-189.
[9] E. W. Hobson, The Theory of the Function of a Real Variable and the Theory of Fourier Series, Cambridge, 1950.
[10] J. M. Hyslop, Note on the strong summability of series, Proc. Glasgow. Math. Assoc. 1 (1952), 16-20.
[11] E. Kogbetliantz, On the absolutely summable series by the method of arithmetical means, Bulletin des Sciences Math. 49 (2) (1925), 234-256.
[12] G. G. Lorentz, A contribution to the theory of divergent series, Acta. Math. 80 (1948), 167-190.
[13] G. G. Lorentz, K. Zeller, Strong and ordinary summability, Tohoku. Math. J. 15 (4) (1963), 315-321.
[14] S. M. Mazhar, A. H. Siddiqui, On the almost summability of a trigonometrical sequence, Acta. Math. Acad. Sci. Hung. 20 (1969), 21-24.
[15] L. McFadden, Absolute N¨ olund summability, Duke. Math. J. 9 (1942), 168-207.
[16] V. N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis, IndianInstitute of Technology Uttarakhand, India, 2007.
[17] V. N. Mishra, K. Khatri, L. N. Mishra, Approximation of functions belonging to Lip (ξ(t),t) class by
(N,p n )(E,q) summability of Conjugate series of Fourier series, J. Inequal. Appl. (2012), 2012:296.
[18] V. N. Mishra, K. Khatri, L. N. Mishra, Deepmala, On the trigonometric approximation of signals belonging to generalized weighted Lipschitz W(L r ,ξ(t))(r ⩾ 1) class by matrix (C 1 .N p ) operator of conjugate series of its Fourier series, Appl. Math. Comput. 237 (2014), 252-263.
[19] V. N. Mishra, K. Khatri, L. N. Mishra, Deepmala, Trigonometric approximation of periodic Signals belonging to generalized weighted Lipschitz W ′ (L r ,ξ(t)),(r ⩾ 1)− class by Norlund-Euler (N,pn)(E,q) operator of conjugate series of its Fourier series, J. Classical. Anal. 5 (2) (2014), 91-105.
[20] V. N. Mishra, L. N. Mishra, Trigonometric Approximation of Signals (Functions) in L-p norm, Inter. J. Contemp. Math. Sci. (7) (19) (2012), 909-918.
[21] M. L. Mittal, R. Kumar, A note on strong Nörlund summability, J. Math. Anal. Appl. 199 (1996), 312-322.
[22] M. L. Mittal, U. Singh, V. N. Mishra, On the strong N¨ orlund summability of conjugate Fourier series, Appl. Math. Comput. 187 (2007), 326-331.
[23] N. E. Norlund, “Sur une application des functions permutables”, Lunds Universitets Arsskrift. 2 (16) (1919), 1-10.
[24] T. Pati, A generalization of theorem of Iyenger on the harmonic summability of Fourier series, Indian J. Math. 3 (1961), 85-90.
[25] J. A. Siddiqi, On the harmonic summability of Fourier series, Proc. Indian. Acad. Sci. 28 (1948), 527-531.
[26] O. Szasz, Introduction to the Theory of Divergent Series, University of Cincinnati, 1946.
[27] O. Szasz, Introduction to the Theory of Divergent Series, University of Cincinnati, Revised Edition, 1952.
[28] E. C. Titchmarsh, The Theory of Functions, Second edition, Oxford University press, 1939.
[29] G. F. Woronoi, Extensin of the notion of the limit of the sum of terms of an infinite series (in Russian), Processing of Eleventh Congress of Russian Naturalist and Physicians, St. Petersburg,1902, 60-61. Annotated English translation by Tamarkin, J. D., Annals of Mathematics. 33 (2) (1932), 422-428.
[30] K. Zeller, Thearie der Limitierungseverfahren, Ergebnisse der Mathematik und ihre Grenzgebiete, Springer-Verlag, Berlin, 1958.