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Abstract. In this paper, we have obtained two theorems for Nörlund summability of Fourier
series and their conjugate series under very general conditions. These two theorems are closely
related to the great works of the analysts Patti [24], McFadden [15] and Siddiqui [25] but not
the same.
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1. Introduction

The old hazy notion of convergence of infinite series was placed on the sound foundation
with the appearance of Cauchy’s monumental work “course d’analysis algebrique” in
1821 and Abel’s researches [1] on the binomial series in 1826. However, it was observed
that there were certain non-convergent series which particularly in dynamical astronomy
furnished nearly correct results. A theory of divergent series was formulated explicitly
for the first time in 1890 when Cesàro [3] published a paper on the multiplication of
series. Since the theory of series whose sequence of partial sums oscillates has been the
center of creative activity for most of the leading mathematical analysts. After persistent
efforts in which several celebrated mathematicians took part like Holder, Hausdorf, Riesz,
Nörlund, etc. It was only in the closing decade of 19th century and the early years
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of the present century that satisfactory methods were devised to associate with them
by process closely connected Cauchy concept of convergence certain values which may
be called their sums in a reasonable way. These processes of associating generalized
sums, known as methods of summability (Szasz [26, 27] and Hardy [6] provide a natural
generalization of the classical notion of convergence (Hobson [9], Titchmarsh [28]) and
are thus responsible for bringing within the eld of applicability a wider class of erstwhile
rejected series that used to be tabooed as divergent. The idea of convergence has been
thus generalized, it was quite natural to study the possibilities of extending the notion of
absolute convergence. As a matter of fact, just as the notion of convergence has led to the
development of its extension under the general title of summability so also by analogy, the
concept of absolute convergence led to the formulation of the various process of absolute
summability [11]. As the ideas of ordinary and absolute convergent were instrumental to
the development of ordinary and absolute summability respectively. Also, the notion of
uniform convergence would have certainly insisted on the analysis of think of uniform
summability. Hardy and Littlewood [7], for the first time in 1913, introduced the notion of
“strong summability” of Fourier series (Fekete [4] in 1916 defined that a series

∑
an). This

type is known as Cesàro summability of order 1 or (C, 1) summability. It is important
to note that strong summability is weaker than absolute summability and strong than
ordinary summability. Lorentz [12], for the first time in 1948, defined almost convergence
of a bounded sequence {Sn} of an infinite series

∑
an. It is easy to see that a convergent

sequence is almost convergent and the limits are the same [14].
Mishra [16], Mishra et al. [17], Mishra et al. ([18, 19]) and Mishra [20] were the first

mathematicians to use some problems on approximation of functions in Banarch spaces,
approximation of functions belonging to Lip(ξ(t), t) class by (N, pn)(E, q) summability
of conjugate series of Fourier series, on the trigonometric approximations of signals be-
longing to generalized weighted Lipschitz W ′(Lr, ξ(t)), (r ⩾ 1)− class by matrix (C1.Np)
operator of conjugate series of its Fourier series, trigonometric approximation of pe-
riodic signals belonging to generalized weighted Lipschitz W ′(Lr, ξ(t)), (r ⩾ 1)-class by
Nörlund-Euler (N, pn)(E, q) operator of conjugate series of its Fourier series and trigono-
metric approximation of signals (functions ) in Lp-norm respetively. The idea of almost
convergence led to the formulation of almost summability methods.

2. Study of “T” and “Φ” Process

Some of the most familiar methods of summability and with which shall be concerned
in the sequel are those that are known as method of Nörlund summability absolute
summability, Cesàaro summability, ordinary and absolute (N̄,pn) summability, (f, dn)
summability, almost matrix summability, (N,Pn) summability and strong summability.
It may however be mentioned that all those methods can be derived from two basic
general processes, which are T- Process and Φ-process.

A T-methods are based upon the formation of an auxiliary sequence tn, defined by the
sequence-to-sequence transformation such that tn =

∑
an,kSk, n = 0, 1, 2, 3, where an,k

being the elements of nth and kth column of Toeplitz matrix method [10] (T = an,k) and
Sk the kth partial sum of infinite series

∑
an. The Φ-methods are based upon the forma-

tion of functional transformation t(x) defined by sequence to - functional transformation
t(x) =

∑
Φn(x) S(y) or by function to - function transform t(x) =

∫∞
0 Φ(x, y)S(y)dy,

where x is constant parameter and the function Φ(x, y) is defined over a suitable interval
of x and y. The series

∑
an or the sequence {Sn} is said to be summable to a finite limits

S by T-method or Φ-method according as the sequence {tn} or the function t(x) tends
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to S as tends to infinity depending upon the method. We considered infinite matrices
A = (an,k) and corresponding matrix transforms and summability, methods (compare
[13, 30]). A sequence {Sk} is said to be Ā - summable to the value σ, if all sums

σn =

∞∑
k=0

ank Sk, n = 0, 1, ... (1)

exist and converge to σ for k → ∞.
The sequence {Sk} is strongly A-summable or Ā-summable to the value, if all sums

σn =

∞∑
k=0

ank |Sk − σ|, n = 0, 1, ... (2)

exist and converge to zero. Strong summability is usually considered only for positive
A (i.e. for ank ⩾ 0). In this case the limit σ is uniquely determined [2, 5]. The method
of summability considered under Nörlund summability was first introduced Woroni [29]
in 1902, it is customary to associate with the name of Nörlund [23] who independently
introduced this method in 1919. In 1948, Siddiqui [25] for the first time to introduce the
notion of harmonic summability of Fourier series.

Let tn =
n∑

r=0

pn−rSr

Pn
, (pn ̸= 0) or

tn = P−1
n

n∑
r=0

pv Sn−r. (3)

If tn → S as n→ ∞, we write
∞∑
n=0

an = S(N, pn) or Sn → S(N, pn).

The conditions of regularity of the method of summability (N, pn) defined by (3) is

lim
n→∞

pn
Pn

= 0. (4)

Strong Cesàro summability [C,α, q] (α > 0, q > 0) of series
∑
an is defined by Hyslop

[10, 22], which is extended to strong Nörlund summability [N, pn, q ], q ⩾ 1 by the Mittal
and Kumar [21], Mittal, Singh and Mishra [22]. This definition can be further extended
to summability [N, pαn, q], α ⩾ 1, q ⩾ 1, by taking pαn(≡

∑n
r=0E

α−1
n−r pr) for pn, where T

α
n

is obtained from [21, 22] replacing pn by pαn.

3. Preliminaries

Let {pn} be a sequence of non-zero constants real or complex with pn as its non-
vanishing nth partial sum and let {Sn} be the sequence of partial sum of a given infinite
series

∑
an. Following the lines of Fekete [4], Hardy and Littlewood [8], if

n∑
m=0

pm|Sn−m − S| = o(pn), as n→ ∞, (5)
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then the sequences {Sn} or the series
∑
an is said to be strongly summable (N, pn) to

the fixed finite sum S.
Let f(t) be a 2π-periodic and Lebesgue integral function of t in (−π, π). Then the Fourier
series corresponding to the functionf(t) is given by

f(t) =
a0
2

+

∞∑
n=1

(an cosnt+ bnsinnt) (6)

and
∑∞

n=0An(t) and its conjugate series is given by

∞∑
n=1

(bn cosnt− an sinnt) =

∞∑
n=1

Bn(t). (7)

Let us write with a fixed point,

Φ(t) = f(x+ t) + f(x− t)− 2f(x), ψ(t) = f(x+ t)− f(x− t),

and

Kn(t) =
1

2π

n∑
m=0

{
pm

sin t
2

ϵm sin

(
n−m+

1

2

)
t

}
,

K̄n(t) = − 1

2π

n∑
m=0

{
pm

sin t
2

ϵm cos

(
n−m+

1

2

)
t

}
,

and p

(
1
t

)
= pτ and P

(
1
t

)
= Pτ , where τ denote the intenral part of 1

t .

The summability of Fourier series by ordinary Nörlund method has been studied by
various analysts. In this direction, the following result due Pati [24] is worth stating.

Theorem 3.1 Let (N, pn) be a regular Nörlund method defined by a real, non-negative,
monotonic non-increasing sequence of coefficients pn such that pn → ∞ and log n = o(Pn)
as n→ ∞. If ∫ t

0
|ϕ(u)|du = o

(
t

Pτ

)
as t→ +0, (8)

then the Fourier series of f(t) is summable (N, pn) to the sum f(x) at the point t = x.

The object of this article is to improve the result of the above theorem under very
general condition by establishing the following theorem.

Theorem 3.2 Let {pn} be a non-negative, monotonic non increasing sequence of con-
stants with {ϵn} a suitable sequence of constants ±1 such that

n∑
m=0

pm ϵm = o

(
Pn

)
, (9)
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where Pn is non-vanishing nth partial sum of the sequence of constants {pn}, and pn
tending to ∞ as n→ ∞. Also, let µ(t) and ν(t) be two positive functions of t such that

µ(t), ν(t) and t µ(t)
ν(t) increases monotonically with t and

µ(n)Pn = o[ν(Pn)] as n→ ∞. (10)

If

Φ(t) =

∫ t

0
|Φ(u)|du = o

[
µ(1t ).pτ

ν(pτ )

]
as t→ +0, (11)

then

n∑
m=0

pm|σn−m(x)− f(x)| = o(Pn) as n→ ∞ (12)

at point t = x, where σn(x) is the n
th partial sum of the Fourier series (6) of the function

f(t) at t = x.

Theorem 3.3 Let {pn} and {ϵn} be the same as in Theorem 3.2 satisfying (9). Again,
let µ(t) and ν(t) are same satisfying the condition (10), and σ̄n(x) be the n

th partial sum
of the conjugate series (7) at t = x. If

Ψ(t) =

∫ t

0
|ψ(u)|du = o

[
µ
(
1
t

)
pτ

ν(Pτ )

]
as t→ 0, (13)

then

n∑
m=0

pm|σ̄n−m(x)− f̄(x)| = o(Pn) as n→ ∞ (14)

at every point x, where f̄(x) = 1
2π

∫ π
0 Ψ(t) cos12 t dt at every point this integral exists.

For the proof of discussed theorems, we need the following lemmas.

Lemma 3.4 If the sequences {pn} and {ϵn} are considered in Theorem 3.2 satisfying the

condition (9), then for 0 ⩽ a < b ⩽ ∞, 0 ⩽ t ⩽ ∞ and for any n, |
∑b

m=a pm ϵme
i(n−m)t| =

o(Pτ ).

It is immediate consequence of a well-known result due to McFadden [15].

Lemma 3.5 Let the sequences {pn} and {ϵn} are considered in Theorem 3.2 satisfying
the condition (9). Then, for 0 ⩽ t ⩽ 1

n ,

|Kn(t)| = o(nPn) (15)

and ∣∣∣∣∣ 1

2π

n∑
m=0

pm ϵm
cos t

2 − cos(n−m+ 1
2)

sin1
2 t

∣∣∣∣∣ = o(nPn) as n→ ∞. (16)
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Proof. For 0 ⩽ t ⩽ 1
n , we have

|Kn(t)| =
∣∣∣∣ 1

2π

n∑
m=0

pm ϵm
sin(n−m+ 1

2)t

sin t
2

∣∣∣∣
= o

{
n∑

m=0

pm ϵm(2n− 2m+ 1)
|sin1

2 t|
|sin1

2 t|

}
= o(nPn) ( using(9))

and ∣∣∣∣∣ 12π
n∑

m=0

pm ϵn
cos t

2 − cos(n−m+ 1
2)t

sin t
2

∣∣∣∣∣ ⩽ 1

2π

n∑
m=0

pm ϵm

n−m∑
k=0

2|sinkt|

= o

[
n∑

m=0

pm ϵm (n−m)

]
as n→ ∞

= o(nPn) as n→ ∞.

■

Lemma 3.6 With the sequences {pn} and {ϵn} as above satisfying (9), and for 1
n ⩽ t ⩽

δ < π, we have

|Kn(t)| = o

[
Pτ

t

]
(17)

|K̄n(t)| = o

[
Pτ

t

]
as n→ ∞. (18)

Proof. Here, for 1
n ⩽ t ⩽ δ < π, we have

|Kn(t)| =
1

2π|

∣∣∣∣ n∑
m=0

pm ϵm
sin(n−m+ 1

t )t

sin t
2

∣∣∣∣
=

1

2π|sin t
2 |
.

∣∣∣∣Im n∑
m=0

pm ϵme
i(n−m+ 1

2
)t

∣∣∣∣
=

1

2π|sin t
2 |

∣∣∣∣∣Im
[
e

it

2

n∑
m=0

pm ϵm ei(n−m)t

]∣∣∣∣∣
= o

[
Pτ

t

]
as n→ ∞ (by Lemma 3.4).

Similarly, we obtain |K̄n(t)| = o

[
Pτ

t

]
as n→ ∞. ■
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Lemma 3.7 If 1
n ⩽ t ⩽ δ < π, then

|K̄n(t)| =

∣∣∣∣∣−1

2π

n∑
m=0

{
Pm

sin t
2

ϵmcos(n−m+
1

2
)t

}∣∣∣∣∣ = o

[
pτ
pn(t)

]
.

Proof. The proof is similar to that of Lemma 3.6. ■

Now, we prove Theorems 3.2 and 3.3.
Proof of Theorem 3.2. Let σn denotes the nth partial sum of the Fourier series (6),
then we have

σn(x)− f(x) =
1

2π

∫ π

0
ϕ(t)

sin(n+ 1
2)t

sin t
2

dt.

Hence,

n∑
m=0

pm

[
σn−m(x)− f(x)

]
=

n∑
m=0

pm ϵm

[
σn−m(x)− f(x)

]

=

∫ π

0
ϕ(t)

{
n∑

m=0

pm ϵm
sin(n−m+ 1

2)t

sin t
2

}
dt

=

∫ π

0
ϕ(t)Kn(t)dt

=

{∫ 1

n

0
+

∫ δ

1

n

+

∫ π

δ

}
ϕ(t)Kn(t)dt (0 < δ < π)

= I1 + I2 + I3, (19)

where {ϵn} is a suitable sequence of constants ±1 such that pm ϵn {σn−m(x)− f(x)} ⩾ 0
for all m. Now,

|I1| ⩽
∫ 1

n

0
| ϕ(t)||Kn(t) |dt

= o

[
nPn

]∫ 1

n

0
|ϕ(t) |dt

= o

[
nPn

]
.o

[
pn.µn
ν(Pn)

]
(by (8))

= o

[
Pn

]
as n→ ∞, (by (10)) (20)
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because npn ⩽ Pn, considering, I2, we have

|I2| ⩽
∫ δ

1

n

|ϕ(t)||Kn(t)|dt

= o

[ ∫ δ

1

n

|ϕ(t)|pτ
t
dt

]
(by(17))

= o

[
Φ(t)

pτ
t

]δ
1

n

+ o

[ ∫ δ

1n
Φ(t)

pτ
t2
dt

]
+ o

[ ∫ δ

1

n

Φ(t)
1

t
d(pτ )

]
= I2.1 + I2.2 + I2.3. (21)

Now,

I2.1 = o

[
Φ(t)

pτ
t

]δ
1

n

= o

[
pn
µ(n).npn
ν(Pn)

]
= o(Pn) as n→ ∞. (22)

Again,

I2.2 = o

[ ∫ δ
1

n

Φ(t)pτ

t2 dt

]
= o

[
n−1∑
m=1

∫m+1
m Φ

(
1
ν

)
p[ν]dv

]
.

But ∫m+1
m Φ

(
1
ν

)
p(ν)dv ⩽ I

(
1
m

)
pm = o

[
pm µ(m) pm

ν(pm)

]
= o(pm) as m→ ∞.

So,

I2.2 = o

(
n−1∑
m=0

pm

)
= o(pn) as n→ ∞ (23)

and

I2.3 = o

[ ∫ δ

1

n

Φ(t)
1

t
dpτ

]

= o

[ ∫ n

1

δ

Φ

(
1

ν

)
V dpv

]

= o

[ n−1∑
m=1

m pmΦ

(
1

m

)]

= o

[ n−1∑
m=1

pm µ(m)
pm

ν(pm)

]

= o

[ n−1∑
m=1

pm

]
= o (pn) as n→ ∞. (24)
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Combining (21), (22), (23) and (24), we get

|I2| = o (pn) as n→ ∞. (25)

Lastly, by virtue of Riemann-Lebesgue theorem and regularity of method of summation,
we have

|I3| ⩽
∫ π

δ
|ϕ(t)||Kn(t)|dt = o

[ ∫ µ

δ
|ϕ(t)|pτ

t
dt

]
= o (pn) as n→ ∞. (26)

Hence, on collecting (19), (20), (25) and (26), we get the required result in (12). This
completes the proof of the Theorem 3.2.
Proof of Theorem 3.3. Let σ̄n(x) the n

th partial sum of the series
∑
Bn(x). Then, we

have

σ̄n(x) =
1

2π

∫ π

0
Ψ(t)

cos t
2 − cos(n+ 1

2)t

sin t
2

dt.

Hence the following (5),

n∑
m=0

pm|σ̄n−m(x)− f̄(x)| =
n∑

m=0

|f̄(x)− σ̄n−m(x)|pm

=

n∑
m=0

pm ϵm

{
f̄(x)− σ̄n−m(x)

}

=

n∑
m=0

pm ϵm

{
1

2π

∫ π

0
Ψ(t).

cos
(
n−m+ 1

2

)
t

sin t
2

dt

}

=

∫ π

0
Ψ(t)

1

2π

n∑
m=0

pm ϵm
cos
(
n−m+ 1

2

)
t

sin t
2

dt

=

∫ π

0
Ψ(t)K̄n(t)dt

=

{∫ 1

n

0
+

∫ δ

1

n

+

∫ π

δ

}
Ψ(t)K̄n(t)dt (0 < δ < π)

= J1 + J2 + J3, (27)

where pm ϵn

{
f̄(x)− σ̄n−m(x)

}
⩾ 0.

Since the conjugate function exists, therefore

1

2π

∫ 1

n

t=0
Ψ(t) cos

t

2
dt = o (1) as n→ ∞. (28)
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Now,

|J1| ⩽
∫ 1

n

t=0

∣∣∣∣Ψ(t)

∣∣∣∣ ∣∣∣∣K̄n(t)

∣∣∣∣dt
=

∫ 1

n

t=0

∣∣∣∣Ψ(t)

∣∣∣∣ ∣∣∣∣ 12π
n∑

m=0

pm ϵm
cos
(
n−m+ 1

2

)
t

sin t
2

∣∣∣∣dt
=

∫ 1

n

t=0
|Ψ(t)| | 1

2π

n∑
m=0

pm ϵm

{
cos t

2

sin t
2

−
cos t

2 − cos
(
n−m+ 1

2

)
sin t

2

dt

⩽ 1

2π

n∑
m=0

pm ϵm|Ψ(t)cos
t

2
|dt+

∫ 1

n

t=0

∣∣∣∣Ψ(t)

∣∣∣∣∣∣∣∣ 12π
[ n∑
m=0

pm ϵm

{
cos t

2 − cos
(
n−m+ 1

2

)
t

sin t
2

}∣∣∣∣dt
= o (pn) .o (1) + (npn)

∫ 1

n

t=0
|Ψ(t)|dt, (by (9), (16) and (28))

= o (pn) + o (npn) . o

[
µ(n)pn
ν(pn)

]
= o (pn) + o

[
pn
µ(n)pn
ν(pn)

]
= o (pn) + o (pn) , using(10)

= o (pn) as n→ ∞. (29)

Also, for 1
n ⩽ t ⩽ δ,

|J2| ⩽
∫ δ

t= 1

n

|Ψ(t)| |K̄n(t)|dt = o

[ ∫ δ

t= 1

n

|Ψ(t)| pτ
Pn(t)

dt

]
= o (Pn) as n→ ∞. (30)

Moreover,

|J3| = o (Pn) (31)

by virtue of Riemann-Lebesgue theorem and the regularity of the method of summation.
Hence, combining (27), (29), (30) and (31), we get the required result in our (14). This
completes the proof of Theorem 3.3.

4. Conclusion

In this paper, we have characterized the Nörlund summability of Fourier series and
their conjugate series. We deduced the special case to obtain the necessary conditions
for the Nörlund summability of series and their conjugate.
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