A review of the impact of the microbiome on autoimmune diseases
Subject Areas :sara basri 1 * , Mohaddeseh Larypoor 2
1 -
2 - Department of Microbiology, North Branch of Islamic Azad University, Tehran, Iran
Keywords: Keywords: Microbiota, Autoimmune Diseases, Immune System , Probiotic,
Abstract :
Introduction: Autoimmune diseases arise from an inappropriate immune response to self-antigens, leading to chronic inflammation and tissue damage. In recent decades, studies have demonstrated that the gut microbiome, a complex ecosystem of bacteria, fungi, and viruses, plays a crucial role in regulating the immune system and homeostasis. The aim of this review is to investigate the impact of the gut microbiome on the pathogenesis and progression of various autoimmune diseases. This review reveals that gut dysbiosis (an imbalance in the gut microbiota) is associated with many autoimmune diseases, including rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, and multiple sclerosis. Proposed mechanisms include the production of microbial metabolites, modulation of innate and adaptive immune responses, and effects on gut permeability. Finally, this review highlights the potential of microbiome-based therapeutic interventions, such as probiotics and fecal microbiota transplantation, for managing autoimmune diseases, although further research is needed to confirm this potential. Conclusion: In summary, mounting evidence suggests that the gut microbiome plays a significant role in the pathogenesis of autoimmune diseases. Disruptions in microbiome composition and function can lead to immune dysregulation and an increased risk of these diseases. A precise understanding of the mechanisms underlying this association could lead to the development of new and effective therapeutic strategies based on modulating the gut microbiome for the prevention and treatment of autoimmune diseases. However, further research is crucial to validate these findings and determine the clinical applicability of these approaches.
1. Vojdani A. A potential link between environmental triggers and autoimmunity. Autoimmun Dis 2014; 2014:1.
2. Andréasson K, Alrawi Z, Persson A, Jönsson G, Marsal J. Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthritis Res Ther. 2016; 18:278.
3. Berrih-Aknin, S. 2014. Myasthenia gravis: paradox versus paradigm in autoimmunity. J. Autoimmun. 52: 1–28.
4. Ochoa-Reparaz, D.W. Mielcarz, L.E. Ditrio, A.R. Burroughs, D.M. Foureau, S. Haque-Begum, L.H. Kasper, Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis, J Immunol, 183.2009; 6041-6050.
5. B. Westrom, A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells, PLoS One, 5. 2010; e9009.
6. Maier, R.C. Anderson, N.C. Roy, Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine, Nutrients, 7 .2014; 45-73.
7. Austin M, Mellow M, Tiemey WM. Fecal microbiota transplantation in the Clostridium difficile Infections. The American Journal of medicine. 2014; 127(6):479-83.
8. A.G. Wexler, A.L. Goodman, An insider's perspective: Bacteroides as a window into the microbiome, Nat Microbiol, 2.2017; 17026.
9. T.A. Tucker, M.D. Schrenzel, R. Knight, J.I. Gordon, Evolution of mammals and their gut microbes, Science, 320. 2008; 1647-1651.
10. Pineda Mde, S.F. Thompson, K. Summers, F. de Leon, J. Pope, G. Reid, A randomized, doubleblinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis, Med Sci Monit, 17.2011; CR347354.
11. Giannakopoulos B, Krilis SA. The pathogenesis of the antiphospholipid syndrome. N Engl J Med 2013; 368:1033–44.
12. Blank M, Krause I, Fridkin M et al. Bacterial induction of autoantibodies to beta2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome. Clin Invest 2002; 109:797–804.
13. Neuman H, Koren O. The gut microbiota: a possible factor influencing systemic lupus erythematosus. Curr Opin Rheumatol 2017; 29:374–7.
14. Haitao Zhang, Zhengzhao Liu, Minlin Zhou, Zhangsuo Liu, Jianghua Chen, Changying Xing, Hongli Lin, Zhaohui Ni, Ping Fu, Fuyou Liu, Nan Chen, Yongcheng He, Jianshe Liu, Caihong Zeng and Zhihong Liu JASN December .2017; 28 (12) 3671-3678.
15. G. Silverman, D. Azzouz , A. Alekseyenko, Systemic Lupus Erythematosus and dysbiosis in the microbiome:cause or effect or both?, Immunol; 2019 Dec;61:80-85.
16. T, Nowak A, Torres M,Campbell J: Bacteriotherapy in chronic fatigue syndrome(CFS). American Journal of Gasterenterology. 2012; 10013-1917 USA.
17. Rsati G. The prevalence of multiple sclerosis in the world: an update. Neurological sciences. 2001.; 22(2):117-03
18. Gradolatto, A., D. Nazzal, F. Truffault, et al. 2014. Both Treg cells and Tconv cells are defective in the myasthenia gravis thymus: roles of IL-17 and TNF-. J. Autoimmun. 52: 53–63.
19. Dalakas, M.C. 2013. Novel future therapeutic options in myasthenia gravis. Autoimmun. Rev. 12: 936941.
20. V. Malmstrom, A.I. Catrina, L. Klareskog, The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting, Nature Reviews Immunology, 17.2017; 60-75.
21. K. Abhari, S.S. Shekarforoush, S. Hosseinzadeh, S. Nazifi, J. Sajedianfard, M.H. Eskandari, The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats, Food Nutr Res, 60.2016; 30876.
22. C.H. Kim, J. Park, M. Kim, Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation, Immune Netw, 14. 2014; 277-288.
23. T.L. Miller, M.J. Wolin, Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora, Appl Environ Microbiol, 62 .1996; 1589-1592.
24. W.S. Chung, A.W. Walker, P. Louis, J. Parkhill, J. Vermeiren, D. Bosscher, S.H. Duncan, H.J. Flint, Modulation of the human gut microbiota by dietary fibres occurs at the species level, BMC Biol, 14.2016;
25. P.D. Cani, W.M. de Vos, Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila, Front Microbiol, 8 ,2017; 1765.
26. Belkaid Y, Hand T. Role of the microbiota in immunity and inflammation. Cell. 2014; 157:121–41.
27. M.C. Collado, M. Derrien, E. Isolauri, Intestinal integrity and Akkermansia muciniphila, a mucindegrading member of the intestinal microbiota present in infants, adults, and the elderly, Appl Environ Microb, 73 .2007; 7767-7770.
28. M. Greger, What’s Your Gut Microbiome Enterotype?, Nutririon Facts.5 (2019) e73.C. Allaband, D. McDonald, Y. Vazquez-Baeza, J.J. Minich, A. Tripathi, D.A. Brenner, R. Loomba, L. Smarr, W.J. Sandborn, B. Schnabl, P. Dorrestein, A. Zarrinpar, R. Knight, Microbiome 101: Studying, Analyzing, and Interpreting Gut Microbiome Data for Clinicians, Clin Gastroenterol Hepatol, (2018).
29. N. Kamada, S.U. Seo, G.Y. Chen, G. Nunez, Role of the gut microbiota in immunity and inflammatory disease, Nat Rev Immunol, 13. 2013; 321-335.Siegrist CA. Neonatal and early life vaccinology .
30. Vaccine 2001; 19:3331– 46.
31. Pimer E. Fecal microbiota transplantation: effectiveness, complexities and lingering concerns. Mucosal immunology. 2014; 7(2):210-4.
32. Harkonen, L. Orivuori, S. Hakala, G.W. Welling, H.J. Harmsen, O. Vaarala, Fecal microbiota composition differs between children with beta-cell autoimmunity and those without, Diabetes, 62.2013; 1238-1244.
33. Ng K., Ferreyra J., Higginbottom S., Lynch J., Kashyap P., Gopinath S., et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013; 502: 96–99.
34. M. Murri, I. Leiva, J.M. Gomez-Zumaquero, F.J. Tinahones, F. Cardona, F. Soriguer, M.I. QueipoOrtuno, Gut microbiota in children with type 1 diabetes differs from that in healthy children: a casecontrol study, BMC Med, 11.2013; 46.
35. M.C. de Goffau, S. Fuentes, B. van den Bogert, H. Honkanen, W.M. de Vos, G.W. Welling, H. Hyoty, H.J. Harmsen, Aberrant gut microbiota composition at the onset of type 1 diabetes in young children, Diabetologia, 57. 2014; 1569-1577.
36. CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D3 recepter in the immune system. Arch Biochem Biophys 2000; 374:334-338.
37. D., Vitamin D and Immune Function. TOUCH BRIEFINGS. 2009.
38. J. Suez, N. Zmora, G. Zilberman-Schapira, U. Mor, M. Dori-Bachash, S. Bashiardes, M. Zur, D. RegevLehavi, R. Ben-Zeev Brik, S. Federici, M. Horn, Y. Cohen, A.E. Moor, D. Zeevi, T. Korem, E. Kotler, A.
39. Harmelin, S. Itzkovitz, N. Maharshak, O. Shibolet, M. Pevsner-Fischer, H. Shapiro, I. Sharon, Z. Halpern, E. Segal, E. Elinav, Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT, Cell, 174. 2018; 1406-1423 e1416.
40. P.A. Bron, M. Kleerebezem, R.J. Brummer, P.D. Cani, A. Mercenier, T.T. MacDonald, C.L. GarciaRodenas, J.M. Wells, Can probiotics modulate human disease by impacting intestinal barrier function?, Br J Nutr, 117, 2017; 93-107.
41. Arron ST, Dimon MT, Li Z et al. High Rhodotorula sequences in skin transcriptome of patients with diffuse systemic sclerosis. J Investig Dermatol. 2014; 134:2138–45.
42. C.J. Qi, Q. Zhang, M. Yu, J.P. Xu, J. Zheng, T. Wang, X.H. Xiao, Imbalance of Fecal Microbiota at Newly Diagnosed Type 1 Diabetes in Chinese Children, Chin Med J (Engl), 129.2016; 1298-1304.
43. L. Wen, R.E. Ley, P.Y. Volchkov, P.B. Stranges, L. Avanesyan, A.C. Stonebraker, C. Hu, F.S. Wong, G.L. Szot, J.A. Bluestone, J.I. Gordon, A.V. Chervonsky, Innate immunity and intestinal microbiota in the development of Type 1 diabetes, Nature, 455.2008; 1109-1113.
44. N. Arpaia, C. Campbell, X. Fan, S. Dikiy, J. van der Veeken, P. deRoos, H. Liu, J.R. Cross, K. Pfeffer, P.J. Coffer, A.Y. Rudensky, Metabolites produced by commensal bacteria promote peripheral regulatory Tcell generation, Nature, 504.2013; 451-455.
45. Van der Meulen TA, Harmsen HJM, Bootsma H, Spijkervet FKL, Kroese FGM, Vissink A. The microbiome– systemic diseases connection. Oral Dis 2016; 22:71