Economic Order Quantity Model for Agricultural Products with Harvest Period
Subject Areas : Inventory ControlYusuf Mauluddin 1 * , Hilmi Aulawi 2 , Andri Ikhwana 3 , Dani Cahyadi 4 , Dewi Rahmawati 5
1 - Institut Teknologi Garut
2 - Institut Teknologi Garut
3 - Institut Teknologi Garut
4 - Institut Teknologi Garut
5 - Institut Teknologi Garut
Keywords: Agricultural Products, Economic order quantity (EOQ), inventories,
Abstract :
This study aims to develop an Economic Order Quantity (EOQ) model for agricultural products with a harvest period. These agricultural products can be stored for a long period, such as coffee and rice. The developed model assumes that the product can only be supplied during the harvest period while the demand is continuously increasing throughout the year. The harvest period only takes place once a year. During harvest, product orders are made to meet demand during harvest and storage to meet demand during non-harvest periods. The storage process will require a warehouse with sufficient capacity to accommodate the same number of products as demand in the non-harvest period. The developed model optimizes the order time interval with a minimum total inventory cost. Based on the optimization results, it can be calculated the frequency of orders, the quantity per one order, the minimum warehouse capacity that must be prepared, and the total cost of ordering per year. Based on sensitivity analysis, changes in harvest and non-harvest periods have a significant effect on total costs.
[1] B. Roach, “Origin of the Economic Order Quantity formula; transcription or transformation?,” Manag. Decis., vol. 43, no. 9, pp. 1262–1268, 2005, DOI.: 10.1108/00251740510626317.
[2] S. Nahmias, “Approximation techniques for several stochastic inventory models,” Comput. Oper. Res., vol. 8, no. 3, pp. 141–158, 1981, DOI.: 10.1016/0305-0548(81)90004-6.
[3] G. Padmanabhan and P. Vrat, “EOQ models for perishable items under stock dependent selling rate,” Eur. J. Oper. Res., vol. 86, no. 2, pp. 281–292, 1995, DOI.: 10.1016/0377-2217(94)00103-J.
[4] C. Y. Dye and L. Y. Ouyang, “An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging,” Eur. J. Oper. Res., vol. 163, no. 3, pp. 776–783, 2005, DOI.: 10.1016/j.ejor.2003.09.027.
[5] C.-T. Chang, S. Kumar Goyal, and J.-T. Teng, “Production, Manufacturing and Logistics On ‘“An EOQ model for perishable items under stock-dependent selling rate and time-dependent
partial backlogging”’ by Dye and Ouyang,” 2005, DOI.: 10.1016/j.ejor.2005.04.024.
[6] C. Muriana, “An EOQ model for perishable products with fixed shelf life under stochastic demand conditions,” Eur. J. Oper. Res., vol. 255, no. 2, pp. 388–396, 2016, DOI.: 10.1016/j.ejor.2016.04.036.
[7] G. Dobson, E. J. Pinker, and O. Yildiz, “An EOQ model for perishable goods with age-dependent demand rate,” Eur. J. Oper. Res., vol. 257, no. 1, pp. 84–88, 2017, DOI.: 10.1016/j.ejor.2016.06.073.
[8] R. D. S. Díaz, C. D. Paternina-Arboleda, J. L. Martínez-Flores, and M. A. Jimenez-Barros, “Economic order quantity for perishables with decreasing willingness to purchase during their life cycle,” Oper. Res. Perspect., vol. 7, no. February 2019, p. 100146, 2020, DOI.: 10.1016/j.orp.2020.100146.
[9] A. A. Taleizadeh, B. Mohammadi, L. E. Cárdenas-Barrón, and H. Samimi, “An EOQ model for perishable product with special sale and shortage,” Int. J. Prod. Econ., vol. 145, no. 1, pp. 318–338,
2013, DOI.: 10.1016/j.ijpe.2013.05.001.
[10] G. E. Kimball, “General principles of inventory control,” J. Manuf. Oper. Manag., vol. 1, no. 95, pp. 119–130, 1988.
[11] M. C. Mabini, L. M. Pintelon, and L. F. Gelders, “EOQ type formulations for controlling repairable inventories,” Int. J. Prod. Econ., vol. 28, no. 1, pp. 21–33, 1992, DOI.: 10.1016/0925-
5273(92)90110-S.
[12] D. W. Choi, H. Hwang, and S. G. Koh, “A generalized ordering and recovery policy for reusable items,” Eur. J. Oper. Res., vol. 182, no. 2, pp. 764–774, 2007, DOI.: 10.1016/j.ejor.2006.08.048.
[13] M. Y. Jaber, S. K. Goyal, and M. Imran, “Economic production quantity model for items with imperfect quality subject to learning effects,” Int. J. Prod. Econ., vol. 115, no. 1, pp. 143–150, 2008,
DOI.: 10.1016/j.ijpe.2008.05.007.
[14] S. K. Goyal and L. E. Cárdenas-Barrón, “Note on: Economic production quantity model for items with imperfect quality - A practical approach,” Int. J. Prod. Econ., vol. 77, no. 1, pp. 85–87,
2002, DOI.: 10.1016/S0925-5273(01)00203-1.
[15] H. M. Wee, J. Yu, and M. C. Chen, “Optimal inventory model for items with imperfect quality and shortage backordering,” Omega, vol. 35, no. 1, pp. 7–11, 2007, DOI.: 10.1016/j.omega.2005.01.019.
[16] J. Rezaei and N. Salimi, “Economic order quantity and purchasing price for items with imperfect quality when inspection shifts from buyer to supplier,” Int. J. Prod. Econ., vol. 137, no. 1, pp. 11–18, 2012, DOI.: 10.1016/j.ijpe.2012.01.005.
[17] W. K. Kevin Hsu and H. F. Yu, “EOQ model for imperfective items under a one-time-only discount,” Omega, vol. 37, no. 5, pp. 1018–1026, 2009, DOI.: 10.1016/j.omega.2008.12.001.
[18] J. Rezaei, “Economic order quantity and sampling inspection plans for imperfect items,” Comput. Ind. Eng., vol. 96, pp. 1–7, 2016, DOI.: 10.1016/j.cie.2016.03.015.
[19] Y. Zhou, C. Chen, C. Li, and Y. Zhong, “A synergic economic order quantity model with trade credit, shortages, imperfect quality and inspection errors,” Appl. Math. Model., vol. 40, no. 2, pp.
1012–1028, 2016, DOI.: 10.1016/j.apm.2015.06.020.
[20] J. J. Liao, “An EOQ model with noninstantaneous receipt and exponentially deteriorating items under two-level trade credit,” Int. J. Prod. Econ., vol. 113, no. 2, pp. 852–861, 2008, DOI.:
10.1016/j.ijpe.2007.09.006.
[21] G. C. Mahata and P. Mahata, “Analysis of a fuzzy economic order quantity model for deteriorating items under retailer partial trade credit financing in a supply chain,” Math. Comput. Model., vol. 53, no. 9–10, pp. 1621–1636, 2011, DOI.: 10.1016/j.mcm.2010.12.028.
[22] G. A. Widyadana, L. E. Cárdenas-Barrón, and H. M. Wee, “Economic order quantity model for deteriorating items with planned backorder level,” Math. Comput. Model., vol. 54, no. 5–6, pp. 1569–1575, 2011, DOI.: 10.1016/j.mcm.2011.04.028.
[23] C. K. Chan, W. H. Wong, A. Langevin, and Y. C. E. Lee, “An integrated production-inventory model for deteriorating items with consideration of optimal production rate and deterioration during delivery,” Int. J. Prod. Econ., vol. 189, pp. 1–13, 2017, DOI.: 10.1016/j.ijpe.2017.04.001.
[24] J. Rezaei, “Economic order quantity for growing items,” Int. J. Prod. Econ., vol. 155, pp. 109–113, 2014, DOI.: 10.1016/j.ijpe.2013.11.026.
[25] A. H. Nobil, A. H. A. Sedigh, and L. E. Cárdenas-Barrón, “A Generalized Economic Order Quantity Inventory Model with Shortage: Case Study of a Poultry Farmer,” Arab. J. Sci. Eng., vol.
44, no. 3, pp. 2653–2663, 2019, DOI.: 10.1007/s13369-018-3322-z.
[26] M. Sebatjane and O. Adetunji, “Economic order quantity model for growing items with imperfect quality,” Oper. Res. Perspect., vol. 6, no. November 2018, p. 100088, 2019, DOI.:
10.1016/j.orp.2018.11.004.
[27] S. Khalilpourazari and S. H. R. Pasandideh, “Modeling and optimization of multi-item multi-constrained EOQ model for growing items,” Knowledge-Based Syst., vol. 164, pp. 150–162,
2019, DOI.: 10.1016/j.knosys.2018.10.032.
[28] Y. Zhang, L. Y. Li, X. Q. Tian, and C. Feng, “Inventory management research for growing items with carbon-constrained,” Chinese Control Conf. CCC, vol. 2016-August, pp. 9588–9593, Aug. 2016, DOI.: 10.1109/CHICC.2016.7554880.
[29] Y. Mauluddin, A. Ikhwana, U. Cahyadi, and M. Sudarwanto, “Production capacity and raw material storage capacity in agriculture-based industries,” in Journal of Physics: Conference
Series, 2019, vol. 1402, no. 2, DOI.: 10.1088/1742- 6596/1402/2/022033.
[30] Z. Hu, T. Cao, Y. Chen, and L. Qiu, “An Algorithm and Implementation Based on an Agricultural EOQ Model,” MATEC web Conf., vol. 22, 2015, DOI.: 10.1051/matecconf/20152201054.
[31] C. Damião and R. Morabito, “Production and logistics planning in the tomato processing industry : A conceptual scheme and mathematical model,” Comput. Electron. Agric., vol. 127, pp.
763–774, 2016, DOI.: 10.1016/j.compag.2016.08.002.
[32] Y. L. Cheng, W. T. Wang, C. C. Wei, and K. L. Lee, “An integrated lot-sizing model for imperfect production with multiple disposals of defective items,” Sci. Iran., vol. 25, no. 2E, pp. 852–867, 2018, DOI.: 10.24200/sci.2017.4414.
[33] A. A. Taleizadeh, D. W. Pentico, M. S. Jabalameli, and M. Aryanezhad, “An economic order quantity model with multiple partial prepayments and partial backordering,” Math. Comput.
Model., vol. 57, no. 3–4, pp. 311–323, 2013, DOI.: 10.1016/j.mcm.2012.07.002.
[34] N. Oktavia, “A MODIFIED ECONOMIC PRODUCTION QUANTITY (EPQ) WITH SYNCHRONIZING DISCRETE AND CONTINUOUS DEMAND UNDER FINITE HORIZON PERIOD AND LIMITED CAPACITY OF STORAGE.”