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Abstract 

This study aims to develop an Economic Order Quantity (EOQ) model for agricultural products with a harvest 

period. These agricultural products can be stored for a long period, such as coffee and rice. The developed model 

assumes that the product can only be supplied during the harvest period while the demand is continuously increasing 

throughout the year. The harvest period only takes place once a year. During harvest, product orders are made to 

meet demand during harvest and storage to meet demand during non-harvest periods. The storage process will 

require a warehouse with sufficient capacity to accommodate the same number of products as demand in the non-

harvest period. The developed model optimizes the order time interval with a minimum total inventory cost. Based 

on the optimization results, it can be calculated the frequency of orders, the quantity per one order, the minimum 

warehouse capacity that must be prepared, and the total cost of ordering per year. Based on sensitivity analysis, 

changes in harvest and non-harvest periods have a significant effect on total costs. 
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INTRODUCTION 

The classic Economic Order Quantity (EOQ) model was first 

introduced by Harris in 1913[1]. This EOQ model determines 

the optimal order quantity to minimize the total inventory 

cost, including ordering and storage costs. Taft, in 1918, 

developed Harris’s model for a production system, where 

products are gradually being produced at known rates. His 

efforts led to a new generation of inventory models, namely 

the Economic Production Quantity (EPQ) model. The 

classical model assumes ideal conditions. Many researchers 

have created and proposed new models to design a more 

realistic inventory system over the years including, for 

instance, an inventory model intended for perishable products 

where the damage level variable is considered [2]–[9], supply 

models for the repairable products such as military products 

[10],[11], and an inventory model for the reusable products 

such as bottles [12]. The inventory model is proposed to 

assume that not all products received have good quality [13]–

[19]. The inventory model considers deteriorating products 

or products with a shelf life [20]–[23]. The nature of a product 

that grows and gains weight is known as a growth product, 

whose value and size increase over time [24]–[28]. Over the 

years, more efforts have been made to develop and optimize 

inventory models in different systems. All the models 

proposed in the literature have in common that the product is 

always available at any time, even though some products can 

only be ordered at a certain period, for example, agricultural 

products that can only be ordered during the harvest period. 

These agricultural products refer to the products that have 

a long shelf life to be stored for a long time, such as rice, 

coffee, corn, and wheat. These products can only be ordered 

during the harvest period while consumed every day. For this 

reason, an adequate stock must be made so that during the 

non-harvest period, the demand can be served. For example, 



Journal of Industrial Engineering International, 17(4), December 2021 

 

 

76 

 J     I     E     I  

 

coffee is a commodity. That agricultural product has a harvest 

period from April to August, while the non-harvest period is 

from September to March [29]. Meanwhile, the demand for 

coffee is increasing every day. 

Few researchers have carried out certain supplies for 

agricultural products [30], [31]. The results of this study are 

a model and algorithm of inventory for farm products. 

However, the previous research has assumed that the product 

is available throughout the year or does not consider the 

harvest period. The study by Mauluddin et al. [29] succeeded 

in describing inventory in agricultural products that took into 

account the harvest period. However, that research did not 

produce a mathematical model, and it only simulated the 

conditions of the inventory. In this study, the EOQ model was 

developed based on the inventory conditions. 

MODEL FORMULATION 

Schematically, we can illustrate the inventory condition of 

agricultural products for one year in Figure 1. During the 

harvest period (t1), Q units of coffee are ordered with a 

frequency of n times. The orders made during the harvest 

period must be sufficient to meet the demand during the 

harvest (D1) and storage (M) to meet the demand (D2) during 

the non-harvest period (t2). 

 

 
FIGURE 1 

INVENTORY CONDITIONS FOR AGRICULTURAL PRODUCTS 

 

ASSUMPTIONS AND NOTATIONS 

The assumption of this model is similar to the classic EOQ 

model assumption. However, there is a loose assumption in 

this model that the product is unavailable in any period or 

only available in the harvest period. The notation used in this 

model are:  

𝐴 : Ordering cost 

ℎ :  Holding cost  

𝐷1 : Demand in the harvest 

𝐷2 : Demand on non-harvest period 

𝑄1 : Quantity order for the harvest period 

𝑄2 : Quantity order for the non-harvest period 

𝑄 : Economic quantity order 

𝑡1 :  The number of days of harvest 

𝑡2 :  The number of days of the non-harvest period 

𝑛 : Frequency of ordering 

𝑇 : Order interval  

𝑀 : Max Inventory 

 

FORMULATION 

Total Cost. (TC) 

The costs involved in this model are the ordering cost and 

holding cost. Total cost is a sum between the ordering cost 

and holding cost. 

 

𝑇𝐶 = 𝑇𝑜𝑡𝑎𝑙 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 + 𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡  (1) 

 

Total Ordering Cost. 

Ordering cost is ordering cost (A) multiplied by the frequency 

of ordering (n). 

𝑇𝑜𝑡𝑎𝑙 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 = 𝐴. 𝑛     (2) 

 

Ordering frequency (n) is how many times the order was 

made at the time of the harvest (t1) with the order interval (T). 

𝑛 =
𝑡1

𝑇
       (3) 

Equation 3 is substituted in equation 2. 

𝑇𝑜𝑡𝑎𝑙 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 =
𝑡1𝐴

𝑇
    (4) 

Total Holding Cost 

Figure 1 shows the inventory condition of agricultural 

products. Total holding cost is divided into several regions. 

The stock cost distribution has been done in previous research 

[32]–[34]. In this study, the holding is divided into three 

areas, as in Figure 2. 

 
 

FIGURE 2 
HOLDING COST 
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Holding I is the cost of storing raw materials to be used 

for the harvest period. If the holding cost I in Figure 2 is 

pulled down, it will form as in Figure 3. 

 

 
FIGURE 3 

HOLDING COST I 

 

These inventory conditions are the same as in classic EOQ so 

that the holding cost I can be found with the following 

formulation: 

 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝐼 =
𝑄1

2
𝑡1ℎ     (5) 

 

The Harvest period (t1 ) can be searched with the following 

formulation: 

 

𝑡1 = 𝑇. 𝑛      (6) 

 

The order frequency (n) can be searched with the following 

formulation: 

 

𝑛 =
𝐷1

𝑄1
       (7) 

 

Equations (6) and (7) are substituted into equation (5). 

 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝐼 =
𝑄1𝐷1𝑇ℎ

2𝑄1
=

𝐷1𝑇ℎ

2
    (8) 

 

Holding cost II is the cost that must be spent to store raw 

materials used during the non-harvest period. The shaded 

image in Figure 4 shows the condition of inventory holding 

costs II. The number of raw materials stored in the cumulative 

is the order quantity of n orders. This kind of condition has 

ever been proposed [32]–[34]. 

 

 
 

FIGURE 4 
HOLDING COST II 

 

It can be seen in Figure 5 that the level of inventory constantly 

rises by 𝑄2 and 𝑛 orders. The total of raw material can be 

found by: 

 

𝑄2 + 2𝑄2 + 3𝑄2 + ⋯ + 𝑛𝑄2 =
𝑛(𝑛+1)𝑄2

2
   (9) 

 

So that the formulation of holding costs II can be found with 

the total of raw material multiplied by the saving cost: 

 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝐼𝐼 =
𝑛(𝑛+1)𝑄2

2
𝑇ℎ    (10) 

 

 Q2 can be searched by requesting during the non-harvest 

time (D2) divided by the frequency of orders (n) 

 

𝑄2 =
𝐷2

𝑛
      (11) 

 

Equation (11) is substituted in equation (10) 

 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝐼𝐼 =
𝑛(𝑛+1)

𝐷2
𝑛

2
𝑇ℎ    (12) 

 

Equation (3) is substituted in equation (12) 

 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝐼𝐼 =
𝑡1
𝑇

(
𝑡1
𝑇

+1)
𝐷2
𝑛

2
𝑇ℎ =

𝐷2(𝑡1+𝑇)ℎ

2
   (13) 

 

Holding cost III is the cost that must be spent to store raw 

materials used during the non-harvest period. The image 

shaded in Figure 5 shows the inventory condition of holding 

costs III. 
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FIGURE 5 
HOLDING COST III 

 

The cost of inventory is the cost of saving as much as Q3. 

To reach the point Q3  is by multiplying Q2 by n. 

 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝐼𝐼𝐼 =
𝑄2𝑛

2
𝑡2ℎ     (14) 

 

Equation (11) is substituted for equation (14) 

 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝐼𝐼𝐼 =
𝐷2
𝑛

𝑛

2
𝑡2ℎ =

𝐷2𝑡2ℎ

2
     (15) 

 

The total of holding cost is the sum of holding cost I, holding 

cost II, and holding cost III or equation (8), equation (13), and 

equation (15) 

 

𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = (
𝐷1𝑇

2
+

𝐷2(𝑡1+𝑇)

2
+

𝐷2𝑡2

2
) ℎ (16) 

 

The total cost is the sum of the total ordering cost and holding 

cost. 

𝑇𝐶 =
𝑡1𝐴

𝑇
+ (

𝐷1𝑇

2
+

𝐷2(𝑡1+𝑇)

2
+

𝐷2𝑡2

2
) ℎ     (17) 

The optimal solution to the proposed inventory system is 

determined by finding T value, which differentiates TC 

(equation 17) as: 

 

 
𝜕𝑇𝐶

𝜕𝑇
= −

𝑡1𝐴

𝑇2 +
𝐷1ℎ + 𝐷2ℎ

2
  

 

  0 = −
𝑡1𝐴

𝑇2 +
𝐷1ℎ + 𝐷2ℎ

2
    

 

         𝑇 = √
2𝑡1𝐴

𝐷1ℎ +𝐷2ℎ
    (18) 

 

The number of raw materials that must be ordered can be 

found by formulation: 

𝑄 = 𝑄1 + 𝑄2      (19) 

The formulation can search for Q1 and Q2: 

𝑄1 =
𝐷1

𝑛
       (20) 

 

 𝑄2 =
𝐷2

𝑛
      (21) 

 

Equation (20) and equation (21) are substituted for equation 

(19) 

 

𝑄 =
𝐷1

𝑛
+

𝐷2

𝑛
      (22) 

 

Ordering frequency (n) can be searched by formulation: 

 

𝑛 =
𝑡1

𝑇
       (23) 

The number of raw materials that must be ordered can be 

found by substituting equation (23) with equation (22). 

 

𝑄 =
𝐷1
𝑡1
𝑇

+
𝐷2
𝑡1
𝑇

=
(𝐷1+𝐷2)𝑇

𝑡1
      (23) 

Max Inventory 

A lot of raw materials will be ordered for the maximum 

inventory or minimum warehouse capacity that must be 

prepared. Based on Figure 6, the company should provide 

warehouse capacity to accommodate as many as M units. 

 

 
  

FIGURE 6 

MAXIMUM INVENTORY 
 

The mathematical formulation to obtain M point is: 

𝑀 = 𝑛𝑄2 + 𝑄1       (24) 

The formulation to find 𝑄2 is by equation (3) substituted into 

the equation (10), obtained: 

 

𝑄2 =
𝐷2𝑇

𝑡1
      (25) 

While the formulation to find Q1 is: 

𝑄1 = 𝑄 − 𝑄2       (26) 

Equations (25) are substituted to equations (26) 

𝑄1 = 𝑄 −
𝐷2.𝑇

𝑡1
        (27) 
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Equations (27), (3), and (23) are substituted to the equation 

(24) 

𝑀 =
𝐷2𝑇𝑡1

𝑡1𝑇
+ (𝑄 −

𝐷2𝑇

𝑡1
) = 𝐷2 + (𝑄 −

𝐷2𝑇

𝑡1
)   (28) 

 

NUMERICAL EXAMPLE 

A coffee company produces coffee for 30 kg/day. The coffee 

harvest period occurs in April - August (153 days) and not in 

September - March (212 days). The ordering cost is IDR 

620,000 / order. The holding cost is IDR 500/kg/day. 

Determining the interval, quantity, and frequency of orders, 

you will know the total cost and warehouse capacity that must 

be prepared.  

Answer: Known: 

 D1 = 30 kg/day × 153 = 4590 kg 

 D2 = 30 kg/day × 212 = 6360 kg 

 t1   = 153 day 

 t2 = 212 day 

 A  = IDR 620,000 

 h = IDR 500 

Asked, T, Q, n, M, and TC 

Solutions 

1) Determine the order interval   

𝑇 = √
2𝑡1𝐴

𝐷1ℎ +𝐷2ℎ
= √

2×153×620000

4590×500+6360×500
= 5,89  day 

 

2) Determine the number of orders 

𝑄 =
(𝐷1+𝐷2)𝑇

𝑡1
=

(4590+6360)×5,89

153
= 421,30  kg 

3) Determine the frequency of ordering 

𝑛 =
𝑡1

𝑇
=

153

5,89
= 25,98  times ordering 

4) Determine maximum inventory 

𝑀 =  6360 + (421,30 −
6360×5,89

153
) = 6536,46 kg 

5) Total cost 

  𝑇𝐶 =
𝑡1𝐴

𝑇
+ (

𝐷1𝑇

2
+

𝐷2(𝑡1+𝑇)

2
+

𝐷2𝑡2

2
) ℎ  

𝑇𝐶 =  𝐼𝐷𝑅 612,579,132  

The inventory conditions of that Coffee Company can be 

seen in Figure 7. 

 

FIGURE 7 

INVENTORY CONDITION IN A COFFEE COMPANY 

ANALYSIS SENSITIVITIES 

Sensitivity analysis is carried out to figure out the influence 

of the parameter changes on other parameters. This model 

assumes that the demand, the ordering cost, and the holding 

cost are known for certainty and unchanged. However, in 

reality, one of the parameters may change. For example, 

when the demand of the parameter becomes more substantial, 

it may affect the total cost. In this case, the case study used to 

analyze the sensitivity of this model is the numerical 

example.  
TABLE I 

 

SENSITIVITY ANALYSIS: CHANGE IN DEMAND 

Change in Demand (D) 

(%) 

T (day) Q (Unit) TC (IDR) 

-50% 

-40% 

-30% 
-20% 

-10% 

0% 
10% 

20% 

30% 
40% 

50% 

8.32 

7.60 

7.04 
6.58 

6.21 

5.89 
5.61 

5.37 

5.16 
4.98 

4.81 

297.90 

326.33 

352.48 
376.82 

399.68 

421.30 
441.86 

461.51 

480.35 
498.48 

515.98 

RP.  614,534,157.51 

RP.  613,636,105.21 

RP.  613,093,004.32 
RP.  612,779,939.29 

RP.  612,623,864.43 

RP.  612,579,132.78 
RP.  612,615,736.01 

RP.  612,713,142.23 

RP.  612,856,842.27 
RP.  613,036,306.44 

RP.  613,243,720.91 

                                     

Table 1 illustrates the changes in demand (D). The 

demand changes are set up and down every 10% and their 

effect on the order time interval (T), order size (Q), and the 

total cost of supplies (TC). It can be seen that the reduction in 

demand increases the order time of interval and reduces the 

order size. But the total cost of decreasing and increasing 

demand is growing. 
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TABLE 2 

SENSITIVITY ANALYSIS: CHANGE IN ORDERING COST 

 

Change in Ordering 

Cost (A) (%) 

T (day) Q (unit) TC (IDR) 

-50% 
-40% 

-30% 

-20% 
-10% 

0% 
10% 

20% 

30% 
40% 

50% 

4.16 
4.56 

4.93 

5.27 
5.58 

5.89 
6.17 

6.45 

6.71 
6.97 

7.21 

297.90 
326.33 

352.48 

376.82 
399.68 

421.30 
441.86 

461.51 

480.35 
498.48 

515.98 

RP614,534,157.51 
RP613,636,105.21 

RP613,093,004.32 

RP612,779,939.29 
RP612,623,864.43 

RP612,579,132.78 
RP612,615,736.01 

RP612,713,142.23 

RP612,856,842.27 
RP613,036,306.44 

RP613,243,720.91 

                                     

Table 2 illustrates changes in ordering cost (A) and their 

effect on the order time interval (T), order size (Q), and the 

total cost of supplies (TC). The change in ordering costs is 

directly proportional to the time interval and size of the order, 

but the total cost of reducing and increasing ordering costs is 

increasing. 
 

TABLE 3 

SENSITIVITY ANALYSIS: CHANGE IN HOLDING COST 

Change in Holding Cost 

(h) (%) 

T 

(day) 

Q (unit) TC (IDR) 

-50% 
-40% 

-30% 

-20% 
-10% 

0% 

10% 

20% 

30% 

40% 
50% 

8.32 
7.60 

7.04 

6.58 
6.21 

5.89 

5.61 

5.37 

5.16 

4.98 
4.81 

595.80 
543.89 

503.54 

471.02 
444.08 

421.30 

401.69 

384.59 

369.50 

356.06 
343.99 

RP614,534,157.51 
RP613,636,105.21 

RP613,093,004.32 

RP612,779,939.29 
RP612,623,864.43 

RP612,579,132.78 

RP612,615,736.01 

RP612,713,142.23 

RP612,856,842.27 

RP613,036,306.44 
RP613,243,720.91 

 

Table 3 illustrates the changes in holding cost (h) and 

their effect on the order time interval (T), order size (Q), and 

the total cost of supplies (TC). The changes in saving costs 

are inversely proportional to the time interval and size of the 

order, but the total cost of reducing and increasing of ordering 

cost is increasing. 

Table 4 illustrates the changes in harvest period (t1) and 

their effect on the order time interval (T), order size (Q), and 

the total cost of supplies (TC). The changes are directly 

proportional to the order time interval and total cost but 

inversely proportional to order size. 

Table 5 illustrates the changes in the non-harvest period 

(t2).  That period changes are set up and down every 10% and 

their effect on the order time interval (T), order size (Q), and 

the total cost of supplies (TC). The changes are inversely 

proportional to the order time interval and total cost but 

directly proportional to order size.  
 

TABLE 4 

SENSITIVITY ANALYSIS: CHANGE IN HARVEST PERIOD 

Change in Harvest 

Periode (t1) (%) 

T (day) Q (unit) TC (IDR) 

-50% 

-40% 
-30% 

-20% 

-10% 
0% 

10% 
20% 

30% 

40% 
50% 

4.16 

4.56 
4.93 

5.27 

5.58 
5.89 

6.17 
6.45 

6.71 

6.97 
7.21 

595.80 

543.89 
503.54 

471.02 

444.08 
421.30 

401.69 
384.59 

369.50 

356.06 
343.99 

RP603,139,438.34 

RP605,314,578.91 
RP607,314,827.09 

RP609,176,612.70 

RP610,925,239.98 
RP612,579,132.78 

RP614,152,199.63 
RP615,655,246.07 

RP617,096,865.17 

RP618,484,024.18 
RP619,822,465.09 

                               

 
TABLE 5 

SENSITIVITY ANALYSIS: CHANGE IN NON-HARVEST PERIOD 

Change in Non-harvest 

Period (t2) (%) 

T (day) Q (unit) TC (IDR) 

-50% 

-40% 

-30% 
-20% 

-10% 

0% 
10% 

20% 

30% 
40% 

50% 

7.66 

7.34 

7.00 
6.65 

6.28 

5.89 
5.46 

5.00 

4.50 
3.93 

3.26 

323.80 

337.93 

354.08 
372.80 

394.83 

421.30 
453.92 

495.51 

551.14 
631.02 

760.12 

RP622,282,696.07 

RP620,529,897.96 

RP618,697,065.08 
RP616,772,116.91 

RP614,739,588.54 

RP612,579,132.78 
RP610,263,043.98 

RP607,751,886.80 

RP604,986,083.29 
RP601,867,662.51 

RP598,212,894.50 

         

The interval of the order time (T) based on the sensitivity 

analysis is directly proportional to the changes in the ordering 

cost and the harvest period. In contrast, for demand, holding 

costs and not the harvest period are inversely proportional. In 

other words, for the case in the numerical example, if the 

ordering cost and the harvest period increase, the order time 

interval will be longer, on the other hand, if the demand, the 

holding cost, and the non-harvest period increase, the order 

time interval will be shorter. 

Order size (Q) based on the sensitivity analysis is 

directly proportional to changes in the demand, the holding 

cost, and the non-harvest period. For ordering cost and the 

harvest, the period is inversely proportional. In other words, 

for the case in the numerical example, the demand, holding 

cost, and not the harvest period increases, the order size will 

be bigger. On the other hand, if the ordering cost and the 

harvest period increase, the order size will be fewer.  

Total Cost (TC), based on the sensitivity analysis, changes in 

demands, ordering costs, and storage costs remain at their 

optimal point. Changes occur in the harvest period, which is 

directly proportional and inversely proportional to the non-

harvest period. 
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CONCLUSION AND FUTURE RESEARCH 

The development of the EOQ model of agricultural products 

with the harvest period was successfully modeled. The model 

developed optimizes the order time interval so that the period, 

frequency, quantity, total order cost, and warehouse capacity 

that must be prepared can be calculated. The numerical 

example uses the commodity coffee, which has a harvest 

period from April to September. The results obtained are the 

same as the modeled inventory conditions, with the value of 

the period, frequency, and quantity of orders generated. 

Sensitivity analysis is conducted to determine the impact of 

parameter changes in demand, order cost, holding cost, 

harvest period, and non-harvest period on changes in total 

costs. Changes in the harvest period and the non-harvest 

period have a significant effect on the total cost. 

The resulting model only applies to agricultural products 

that have a harvest period of once a year. Future development 

will be modeled for agricultural products that have a harvest 

period of more than that. The model is a deterministic model 

which assumes that the parameters of demand, order costs, 

holding costs, the number of days of the harvest period, and 

the non-harvest period, are known with certainty and do not 

change over time. It needs more advanced development, 

namely, bringing it into the realm of probability. 
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