A Study on the Effect of Nanosilicate-Based Coatings on Storage Life of Pomegranate Cultivar Malas-E-Saveh
Subject Areas : MicrobiologyA. Bekran 1 , E. Seifi 2 * , F. Varasteh 3
1 - M. Sc. Graduate Student of the Department of Horticultural Sciences, Gorgan University of Agricultural
Sciences and Natural Resources, Gorgan, Iran.
2 - Associate Professor of the Department of Horticultural Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 - Assistane Professor of the Department of Horticultural Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
Keywords: Nano Silicate Clay, Packaging, Polyethylene, Polypropylene, Pomegranate, Storage Life,
Abstract :
Introduction: The high nutritional and medicinal values and the increasing production anddemands, it is important to control the factors affecting the quality of pomegranate fruitduring storage. Regarding the understanding of how to store pomegranate fruit, it would bepossible to offer this product at local and international markets for a long duration with highquality.Materials and Methods: In this study, the effect of nano silicate-based polyethylene andpolypropylene on the storage life of pomegranate fruit (cultivar Malas-e-Saveh) has beenstudied in a completely randomized factorial design. The treated fruits were stored in commonstorage for two and four months period. Qualitative and quantitative characteristics of fruitswere measured using the standard methods of analysis.Results: The results showed that the nano-based polyethylene and polypropylene couldmaintain the highest amount of moisture in the skin (75.72% and 73.14%, respectively) ascompared to the control (26.64%) at the end of storage period. These coating treatments alsomaintained the highest amount of aril moisture (76.88%) as compared to the control(71.09%). After storage period, the nano-based polypropylene showed the highestconcentrations of phenolic compounds (883.54 mg GAE/100 ml), flavonoids (487.71 mgGAE/100 ml) and anthocyanins (11.69 mg C3GE/100 ml) as compared to the control (649.76and 437.56 mg GAE/100 ml, and 7.9 mg C3GE/100 ml, respectively); although the normalcoating treatments showed less influence. Nano-based coating treatments also decreased thechanging rate of ascorbic acid but did not have any significant influence on pH and EC.Conclusion: The application of nano-based polyethylene and polypropylene treatments isrecommended to improve the keeping quality of pomegranate fruit during storage.
رنجبر، ح.، حسن پور، م.، عسگری سرچشمه، م. ع.، سمیع زاده لاهیجی، ح. و بنی اسدی، ع. (1386). بررسی تاثیر تیمارهای کلرید کلسیم، آب گرم و پوشش پلی اتیلن بر روی عمر انبارمانی و کیفیت میوه انار (رقم ملس ساوه). فصلنامه علوم و صنایع غذایی ایران، سال چهارم، شماره 2، صفحات 9-1.
طلایی، ع.، عسگری سرچشمه، م. ع.، بهادران، ف. و شرافتیان، د. (1383). مطالعه آثار تیمارهای آب گرم و پوشش پلی اتیلن بر روی عمر انبارمانی و کیفیت میوه انار رقم ملس ساوه. علوم کشاورزی ایران، سال سی و پنجم، شماره 2، صفحات 377-369.
فهیمی نیا، ص. و ناصری، ل. (1394). تأثیر بستههای نانو کامپوزیت بر خواص کیفی و ماندگاری میوه آلو رقم سانتارزا. نشریه پژوهشهای علوم و صنایع غذایی ایران، سال یازدهم، شماره 1، صفحات 99-88.
محسنی، ع. (1389). انار (راهنمای تولید). انتشارات نشر آخر. ص 216.
میردهقان، س.ح. و راحمی، م. (1388). تعیین زمان ایجاد خسارت سرمازدگی میوه انار در طول نگهداری در سردخانه. علوم باغبانی ایران، سال چهل و یکم، شماره 1، صفحات 18-11.
Ahmed, M. J., Sigh, Z. & Ahmad, S. K. H. (2009). Postharvest Aloe vera gel-coating modulates fruit ripening and quality of ‘Arctic Snow’ nectarine kept in ambient and cold storage. International Journal of Food science and Technology, 44, 1024-1033.
Altunkaya, A. & Gokmen, V. (2008). Effect of various inhibitors on enzymatic browning, antioxidant activity and totalphenol content of fresh lettuce (Lactuca sativa). Food Chemistry, 107, 1173-1179.
AOAC. (1995). Official methods of analysis (15th ed.). Washington, DC: Association of Official Analytical Chemists.
Avella, M. D., Vlieger, J., Errico, M. E., Fischer, S., Vacca, P. & Volpe, M. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry, 93, 467-474.
D’ Aquino, S., Palma, A., Schirra, M., Continella, A., Tribulato, E. & La Malfa, S. (2010). Influence of film wrapping and fludioxonil application on quality of pomegranate fruit. Postharvest Biology and Technology, 55, 121-128.
Douglas, K. R., Robinson, G. & Salejova, Z. (2010). Nanotechnology for Biodegradable and Edible Food Packaging. FOCUS REPORT for the FP7 project Observatory NANO, April 2010.
Elyatem, S. M. & Kader, A. (1984). Post-harvest physiology and storage behavior of pomegranate fruits. Scientia Horticulture, 24, 287-298.
Fawole, O. A. & Opara, U. L. (2013a). Change in physical, chemical and phytochemical properties and antioxidant activity of three pomegranate cultivars grown in South Africa. Food and Bioprocess Technology, 5 (7), 2934-2940.
Fawole, O. A. & Opara, U. L. (2013b). Changes in physical properties, chemical and elemental composition and antioxidant capacity of pomegranate fruit at five maturity stages. Scientia Horticulturae, 150, 37-46.
Ghasemnezhad, M., Zareh, S., Rassa, M. & Hassan-Sajedi, R. (2013). Effect of chitosan coating on maintenance of aril quality microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. Journal of Science of Food and Agriculture, 93, 368-374.
Giusti, M. M. & Wrolestad, R. E. (2001). Characterization and measurement of anthocyanins by uv-visible spectroscopy. In: Wrolstad, R. E., Schwartz, S. J. (Eds.), Current Protocols in Food Analytical Chemistry. John Wiley and Sons, New York, pp. 1-13.
Hu, O., Fang, Y., Yang, Y., Ma, N. & Zhao, L. (2011) Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. Food Research International Journal, 44 (6), 1589-1596.
Hur, J. S., Oh, S. O., Lim, K. M., Jung, J. S., Kim, J. W. & Koh, Y. J. )2005(. Novel effects OFTiO2photocatalyticozonation on control of postharvest fungal spoilage of kiwifruit. Postharvest Biology and Technology, 35 (1), 109-113.
Kalt, W. (2005). Effects of production and processing factors on major fruit and vegetable antioxidants. Journal of Food Science, 70, 11-19.
Kashyap, G. & Gautam, M. D. (2012). Analysis of vitamin C in commercial and naturals substances by Iodomeric titration found in Nimar and Malwargeiion. Scientific Research in Pharmacy, 1 (2), 77-78.
Maneerat, C., Hayata, Y., Egashira, N., Sakamoto, K., Hamai, Z. & Kuroyanagi, M. )2003(. Photocatalytic reaction of TiO2 to decompose ethylene in fruit and vegetable storage. Transactions of the Asae, 46 (3), 725-730.
Miguel, G., Fontes, C., Antunes, D., Neves, A. & Martins D. (2004). Anthocyanin concentration of ‘Assaria’ pomegranate fruits during different cold storage conditions. Journal of Biomedicine and Biotechnology, 5, 338-342.
Mittler, R. (2002). Oxidative stress antioxidants and stress tolerance. Trends Plant Science, 7, 405-410.
Qiuhui, H., Yong, F., Yanting, Y., Ning, M. A. & Liyan, Z. (2011). Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. Food Research International Journal, 44, 1589-1596.
Robinson, D. K. R. & Salejova, G. (2010), Nanotechnology for Biodegradable and Edible Food Packaging. Focus report for the FP7 project Observatory Nano, April 2010.
Rathore, H. A., Masud, T., Shehla, X. S. & Soomro, A. H. (2007). Effect of storage on physico-chemical composition and sensory properties of Mango (Mangnifera indica L.) variety Dosehari. Pakistan Journal of Nutrition, 6, 143-148.
Sayyari, M., Babalar, M., Kalantari, S., Martínez-Romero, D., Guillén, F., Serrano, M. & Valero, D. (2011). Vapor treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chemistry, 124, 964–970.
Selcuk, N. & Erkan, M. (2014). Changes in antioxidant activity and postharvest quality of sweet pomegranates cv. Hicrannaar under modified atmosphere packging. Postharvest Biology and Technology, 92, 29-36.
Shi., SH., Wang, W., Liu, L., Wu, SH., Wei, Y. & Li, W. (2013). Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. Journal of Food Engineering, 118, 125-131.
Shiri, M. A., Ghasemnezhad, M., Bakhshi, D. & Dadi, M. (2011). Changes in phenolic compounds and antioxidant capacity of fresh-cut table grape (Vitis vinifera) cultivar ‘Shahaneh’ as influence by fruit preparation methods and packagings. Australian Journal of Crop Science, 5, 1515-1520.
Silvestre, C., Duraccio, D. & Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science Journal, 110, 775-795.
Singelton, V. L. & Rossi, J. I. (1965). Clorimetri of total phenolics with phosphomolibdic-phosphotungestic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
Smimoff, N. (1995). Antioxidant system and plant response to the environment. Bios Scientific Publisher Oxford, United Kingdom, 25, 217-243.
Spinardi, A. M. (2005). Effect of harvest date and storage on antioxidant systems in pears. Acta Horticulturae, 682, 135-140.
Sun, T. & Ho, C. T. (2005). Antioxidant activity of buck wheat extracts. Food chemistry, 90, 743-749.
UPOV. (2012). Guidelines for the conduct of tests for distinctness, uniformity and stability in Pomegranate (Punica granatum L.). International union for the protection of new varieties of plants, 34 pp.
Utracki, L. A. (2004). Clay-containing polymeric nanocomposites, Vols. 1 and 2. Shaw bury (UK): Rapra Technology Ltd.
Varasteh, F., Arzani, K., Barzegar, B. & Zamani, Z. (2012). Changes in anthocyanins in arils of chitosan-coated pomegranate (Punica granatum L. cv. Rabbab-e-Neyriz) fruit during cold storage. Food Chemistry, 130, 267–272.
Wang, S. Y. & Gao, H. (2013). Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria aranassa Duch.). LWT Food Science Technology, 52, 71-79.
Yang, F. M., Li, H. M., Li, F., Xin, Z. H., Zaho, L. Y., Zheng, Y. H. & Hu, Q. H. (2010). Effect of nano packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 ºC. Journal of Food Science, 75, 236-240.
Yu, Y. W., Zhang, S. Y., Ren, Y. Z., Li, H., Zhang, X. N. & Di, J. H. (2012). Jujube preservation using chitosan film with nano-silicon dioxide. Journal of Food Engineering, 113, 408-414.
Zandi, K. H., Weisany, W., Ahmadi, H., Bazargan, I. & Naseri, L. (2013). Effect of nanocomposite-based packaging on postharvest quality of strawberry during storage. Bulletin of Environment, Pharmacology and Life Sciences, 2 (5), 28-36.
Zandi, K. H., Naseri, L. & Esmaiili, M. (2013). Effect of packaging material containing nano-silver and silicate clay particles on postharvest quality attributes of sweet cherry cv. Syaahe Mashhad. Journal of Food Reserch, 24, 102-89.
Zhu, J. & Zhu, Y. (2006). Effects of the postharvest storage temperature and its fluctuations on the keeping quality of Agaricus bisporus. International Journal of Food Engineering, 2, 1–10.
_||_