Optimization of the Production of Protein Hydrolysates from Cotton Seed by Response Surface Methodology
Subject Areas : MicrobiologyP. Shabani 1 , B. Akbari - Adergani 2 *
1 - M. Sc. Student of the Department of Food Science and Technology, Pharmaceutical Sciences Branch (IAUPS), Islamic Azad University, Tehran, Iran.
2 - Associate Professor of Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
Keywords: Antioxidant Activity, Cotton Seed, Protein Hydrolysates, Response Surface Methodology,
Abstract :
Introduction: Protein hydrolysates are compounds with low molecular weight that after entering the body are easily absorbed and play important biological roles in cellular levels. The most important functions of bioactive compounds are antioxidant, antimicrobial, anticancer activities and enhance the immune system. The main objective of this study was to produce cotton seed protein hydrolysate using pepsin enzyme that was optimized by response surface methodology. Materials and Methods: The factors investigated in this study were temperature (30-40◦C), time (2-5h) and enzyme/substrate ratio (0.5-2%) in order to obtain maximum antioxidant activity. The antioxidant activities were investigated using 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging capacity, total antioxidant capacity, reducing power and chelating activity. All of the experiments were designed according to the central composite design. Results: Each of the studied variables had a significant effect on the responses (p<0/05). The optimal conditions to achieve maximum antioxidant activity were temperature of 31.1◦C, time of 5h and enzyme/substrate ratio of 1.75%, respectively. Under these conditions, (DPPH) free radical scavenging capacity, reducing power, chelating activity, total antioxidant capacity and degree of hydrolysis were 83%, 0.158 Å, 70%, 1.99 mmol α- tocopherol/mL and 31.75%, respectively. Conclusion: Cotton seed protein hydrolysates have exhibited good antioxidant activity and might be employed as a natural antioxidant in food products and formulations.
پروانه، و. (1385). کنترل کیفیت و آزمونهای شیمیایی مواد غذایی. انتشارات دانشگاه تهران، ص 332.
پیری، ش.، صادقی ماهونک، ع.ر.، قربانی، م. و اعلمی، م. (1393). بهینه سازی شرایط هیدرولیز پروتئین آب پنیر جهت حصول به حداکثر فعالیت آنتی اکسیدانی با استفاده از روش سطح پاسخ. پایاننامه کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
طاهری، ع.، جلالی نژاد، س. و علی انوار، س.ا. (1391). خواص ضد فشار خون و ضداکسیدان پنج نوع پروتئین آبکافت حاصل از ضایعات میگوی سفید هندی (Penaeus indicus). پاتوبیولوژی مقایسهای، دوره 9، شماره 1، صفحات 608-599.
کوشکی، م.ر. خوشگذران آبرس، ص.، عزیزی، م.ح.، بلقیسی، س. و نجفی، م. ع. (1390). بررسی و ارائه روشی مناسب جهت تولید کنسانتره پروتئینی پنبه دانه برای مصرف انسان. فصلنامه علوم و صنایع غذایی، دوره 8، شماره 28.
مهرگان نیکو، ع.، صادقی ماهونک ، ع.ر.، قربانی، م.، طاهری، ع. و اعلمی، م. (1392). بهینهسازی عوامل موثر در فعالیت آنتیاکسیدانی پروتئین هیدرولیز شده ماهی کاراس (Carassius carassius) به روش سطح پاسخ. نشریه فرآوری و نگهداری مواد غذایی، دوره 5، شماره 1، صفحات 110-95.
AACC. (1999). Approved method of the American Association of Cereal Chemists. St. Paul: American Accosiation of Cereal Chemists. Ins.
Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. & Nasri, M. (2009). Antioxidant and free radical –scavenging
activities of smooth hound (Mustelusmustelus) muscle protein hydrolysates obtained by gastrointestinal protease. Food chemistry, 114, 1198-1205.
Cho, M. J., Unklesbay, N., Fu-Hung, H. D. & Clarke, A. (2004). Hydrophobicity of bitter peptides from soy protein hydrolysates. Journal of Agricultural and Food Chemistry, 52, 5895-5901.
Cumby, N., Zhong, Y., Naczk, M. & Shahidi, F. (2008). Antioxidant activity and water holding capacity of canola protein hydrolysates. Food chemistry, 109, 144-149.
Erdmann, K., Cheung, W. Y. B. & Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. Journalof Nutrition and Biochemistry, 19, 643-654.
Gao, D., Chang, T., Li, H. & Cao, Y. (2010). Angiotensin I-converting enzyme inhibitor derived from cottonseed protein hydrolysate. African Journal of Biotechnology, 9, 8977-8983.
Gimenez, B., Aleman, A., Montero, P. & Gomez-Guillé, M. C. (2009). Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chemistry, 114, 976-983.
Hmidet, N., Balti, R., Nasri, R., Sila, A., Bougatef, A. & Nasri, M. (2011). Improvement of functional properties and antioxidant activities of cuttlefish (sepia officinalis) muscle proteins hydrolysed by Bacillus mojavensis A21 proteases. Food Research International, 44, 2703-2711.
Ito, N., Hirose, M., Fukushima, S., Tsuda, H., Shirai, T. & Tatematsu, M. (1986). Studies on antioxidants: Thecarcinogenic and modifying effects on chemical carcinogenic. Food and Chemical Toxicology, 24, 1099–1102.
Je, J. Y., Lee, K. H., Lee, M. H. & Ahn, H. B. (2009). Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International, 42, 1266-1272.
Kamau, K., Therakulkait, C. & Cadwallader, K. (2009). Effect of preparation conditions on composition and sensory aroma characteristics of acid hydrolysed rice bran protein concentrate. Journal of Cereal Science, 50, 56-60.
Li, Y., Jiang, B., Zhang, T., Mu, W. & Liu, J. (2008). Antioxidant and free radicalscavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry, 106, 444-450.
Ovissipour, M., Abedian, A. M., Motamedzadegan, A., Rasco, B., Safari, R. & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (A cipenser persicus) viscera. Journal of Food Chemistry, 115, 238–242.
Rajapakse, N., Yung, W. K., Mendis, E., Moon, S. H. & Kim, S. K. (2005). A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Science, 76, 2607-2619.
Samaranayaka, G. P. A. & Li-Chan, C. Y. E. (2011). Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods, 3, 229-254.
Sarmadi, B. H. & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31, 1949-1956.
Silva, V. S. &Malcata, F. X. (2004). Caseins as source of bioactive peptides. International Dairy Science, 15,1-15.
Sun, Q., Shen, H. & Leu, Y. (2011). Antioxidant activity of hydrolysates and peptide fractions drived from porcine hemoglobin. Journal of Food Science and Technology, 21, 6646-6652.
Takenaka, A., Annaka, H., Kimura, Y., Aoki, H. & Igarashi, K. (2003). Reduction of paraquat-induced oxidative stress in rats by dietary soy peptide. Bioscience Biotechnology Biochemistry, 67, 278-283.
Wiriyaphan, C., Chitsomboon, B. & Yonsawadigul, J. (2012). Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chemistry, 132, 104-111.
_||_