Isolation, identification and fingerprinting of lactobacillus bacteria in dairy and fermented products of Lorestan province and determination of genetic relationships between them using RAPD-PCR marker
Subject Areas : MicrobiologyS. Daraie 1 , B. Doosty 2 , K. Samiei 3 *
1 - MSc Student of the Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran.
2 - Associate Professor of the Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran.
3 - Assistant Professor of the Department of Agronomy and Plant Breeding, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran.
Keywords: RAPD-PCR, phylogenetic, Lactic Acid, Lactobacillus,
Abstract :
Introduction: Lactic acid bacteria (LAB) are the main and natural components of the microflora of the digestive system. Identification of lactic acid bacteria and their use in the food industry is very important. Material and Methods: In order to isolate natural lactic acid bacteria, samples of local yogurt and traditional tarkhineh were collected from different regions of Lorestan province, with respect to suitable geographical distances and different weather conditions. After separating gram-positive and catalase-negative bacteria, 20 lactic acid bacteria were selected and then using specific primers, the 16SrDNA gene was amplified and after alignment and comparison with the NCBI database, the type of bacteria was determined. In order to estimate the genetic diversity between the studied bacteria using the RAPD marker, 4 primers were used. Finally, a phylogenetic tree was made between the studied bacteria. Results: Based on the antibiogram test, it was found that all the studied bacteria were resistant to kanamycin and amikacin antibiotics and sensitive to gentamicin, vancomycin and tetracycline antibiotics. Bacteria isolated from tarkhineh with 97% similarity and bacteria isolated from yogurt with 89% similarity were placed in the same group. Two bacterial strains isolated from yogurt were 94% similar to L.rhamnosus bacteria. In relation to the two bacterial strains isolated from tarkhineh sample, the results showed that these two bacteria were 98% similar to L. pentosus bacteria. Based on the results of grouping by RAPD-PCR marker, the studied bacteria formed 6 groups with a similarity coefficient of 57%, and one genotype alone formed one group. Regarding the geographical distances and the grouping obtained, the bacteria samples isolated from the traditional products of similar geographical areas were placed in close groups. Conclusion: The results generally showed that the use of genetic markers can be very effective in identifying the species and strains of lactic acid bacteria in dairy and fermented products.
Abdollahniya, D., Hosseini, S.M., Baghbaderani, B.K., Mordadi, A. & Arabestani, M.R. (2018). Identification of Lactobacillus species isolated from traditional dairy products using RAPD-PCR. Avicenna Journal of Clinical Microbiology and Infection, 5(2), 7-13. https://doi.org/10.34172/ajcmi.2018.02
Bogra. M.S., Iqbal, S. & Ershad, K. (2017). Isolation and presumptive characterization of probiotic lactic acid bacteria from yoghurt. International Journal of Dairy Science and Technology. 3(2), 172-180.
Chakravorty, S., Helb, D., Burday, M., Connell, N. & Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of microbiological methods, 69(2), 330-339. https://doi.org/10.1016/j.mimet.2007.02.005.
Coeuret, V., Dubernet, S., Bernardeau, M., Gueguen, M. & Vernoux, J.P. (2003). Isolation, characterisation and identification of lactobacilli focusing mainly on cheeses and other dairy products. Le Lait, 83(4), 269-306. https:// doi.org/10.1051/lait:2003019.
Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D. & Singh, B.K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature communications, 7(1), 10541. https://doi.org/10.1038./ncomms10541.
Dimidi, E., Cox, S.R., Rossi, M. & Whelan, K. (2019). Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients, 11(8), 1806. https://doi.org/10.3390/nu11081806.
Dimitonova, S.P., Bakalov, B.V., Aleksandrova-Georgieva, R.N. & Danova, S.T. (2008). Phenotypic and molecular identification of lactobacilli isolated from vaginal secretions. J Microbiol Immunol Infect, 41(6), 469-477.
Dimitrakopoulou, M.E., Stavrou, V., Kotsalou, C. & Vantarakis, A. (2020). Boiling extraction method vs commercial kits for bacterial DNA isolation from food samples. Journal of Food Science and Nutrition Research, 3(4), 311-319. https://doi.org/10.26502./jfsnr.2642-11000057.
Džidić, S., Šušković, J. & Kos, B. (2008). Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technology & Biotechnology, 46(1).
Eren, A.M., Ferris. M.J. & Taylor, C.M. (2011). A framework for analysis of metagenomics sequencing data. Pacistan Bio Computer, 131-141. https://doi.org/1 0.5897/AJB2013.12057.
Kim, S., Huang, E., Park, S., Holzapfel, W. & Lim, S.D. (2018). Physiological characteristics and anti-obesity effect of Lactobacillus plantarum K10. Korean Journal of Food Science of Animal Resources. 38(3), 554-569. https://doi.org/10.5851/kosfa.2018.38.3.554.
Kshikhundo, R. & Itumhelo, S. (2016). Bacterial species identification. World News of Natural Sciences, 3.
Lahiri, D., Nag, M., Sarkar, T., Ray, R.R., Shariati, M.A., Rebezov, M., Bangar, S.P., Lorenzo, J.M. & Domínguez, R. (2022). Lactic acid bacteria (LAB): Autochthonous and probiotic microbes for meat preservation and fortification. Foods, 11(18), 2792. https://doi.org/10.3390/foods11182792.
Markiewicz, L.H., Biedrzycka, E., Wasilewska, E. & Bielecka, M. (2010). Rapid molecular identification and characteristics of Lactobacillus strains. Folia microbiologica, 55, 481-488. https://doi.10.1007./s12223-010-0080-z.
Min, K.H., Yin, F.H., Amin, Z., Mansa, R.F. & Ling, C.M.W.V. (2022). An Overview of the Role of Lactic Acid Bacteria in Fermented Foods and Their Potential Probiotic Properties. Borneo International Journal of Biotechnology (BIJB), 2, 65-83. https//:doi.org/10.51200/bijb.v2i.4186.
Mokoena, M.P. (2017). Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules, 22(8), 1255. https:// doi.org/10.3390/molecules22081255.
Montazeri, V., Yasaei, G. & Kazemi, M.J. (2020). Isolation, identification, and characterization of lactic acidic bacteria isolated from the raw milk of a single-humped camel. Microbiology, Metabolites and Biotechnology, 3(1), 53-62. https://doi.org/10.22104/ARMMT.2022.5077.1056.
Nazir, Y., Hussain, S.A., Abdul Hamid, A. & Song, Y. (2018). Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. BioMed research international. https://doi.org/10.1155/2018/3428437.
Perez, R.H., Zendo, T. & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial cell factories, 13(1), 1-13. https://doi:10.1186/1475-2859-13-S1-S3.
Rodriguez, A.V., Baigorı́, M.D., Alvarez, S., Castro, G.R. & Oliver, G. (2001). Phosphatidylinositol-specific phospholipase C activity in Lactobacillus rhamnosus with capacity to translocate. FEMS Microbiology Letters, 204(1), 33-38. https://doi.org/10.1111/j.1574-6968.2001.tb10858.x.
Ruiz, P., Izquierdo, P.M., Seseña, S. & Palop, M.L. (2008). Intraspecific genetic diversity of lactic acid bacteria from malolactic fermentation of Cencibel wines as derived from combined analysis of RAPD-PCR and PFGE patterns. Food Microbiology, 25(7), 942-948. https:// doi.org/10.1016/j.fm.2008.06.007.
Sharma, R., Garg, P., Kumar, P., Bhatia, S.K. & Kulshrestha, S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 6(4), 106. https:// doi.org/10.3390/fermentation6040106.
Wang, G., Chen, Y., Xia, Y., Song, X. & Ai, L. (2022). Characteristics of probiotic preparations and their applications. Foods, 11(16), 2472. https:// doi.org/10.3390/foods11162472.
Zabat, M.A., Sano, W.H., Wurster, J.I., Cabral, D.J. & Belenky, P. (2018). Microbial community analysis of sauerkraut fermentation reveals a stable and rapidly established community. Foods, 7(5), 77. https:// doi.org/10.3390/foods7050077.
Zhang, B., Wang, Y., Tan, Z., Li, Z., Jiao, Z. & Huang, Q. (2016). Screening of probiotic activities of lactobacilli strains isolated from traditional Tibetan Qula, a raw yak milk cheese. Asian-Australasian journal of animal sciences, 29(10), 1490. https://doi/10.5713/ajas.15.0849.