Identification of Chemical Compounds and amount of CarbohydratesSsoluble in Trehala manna
Subject Areas : ChemFarzaneh Darikvand 1 , Mehrdad Ghavami 2 , Mustafa Ghanadian 3 , M. Honarvar 4 *
1 - Ph.D. Graduated of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 - Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 - Associate Professor of the Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
4 - Associate Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Keywords: " Chemical Compounds", " Carbohydrate", "Trehalose", "Trehala manna",
Abstract :
Introduction: One of the most challenging issues in food and pharmaceutical industries is finding effective and safe saccharides from natural sources instead of the synthetic counterparts which can have side effects. In this regard, Trehala manna is considered a promising natural source of sugar and produced by Echinopes in response to insect activity.Results: The highest percentage of protein (2.97%), fat (0.87%), moisture (5.83%), fibre (0.83%) and ash (3.51%) was related to samples in Jahrom, and followed by Sabzevar, Mehriz, Jahrom, and Banaroyeh, in order of magnitude. Benaroyeh sample had the highest proportion of trehalose (17.11). However, Shiraz sample had the highest total sugar content (115 mg/g) and water-soluble sugar (45 mg/g) among the samples.The values of sucrose, glucose, fructose were ranged 2.4-8.2 (mg/gr), 7.6-4.5 (mg/gr) and 4.4-1.2 (mg/gr), respectively. In all cases, there were significant differences (p<0.05). Conclusion: The origin of Trehala manna in different regions of Iran significantly affect their chemical components, especially trehalose. In this regard, Trehala mana from Benaroyeh region can be used as a proper source of trehalose (17.11%) for industrial purposes and the production of functional food.
Anon. AACC International approved method 08- 01.01, Total ash basic method.
Anon. AACC International approved method 32- 10.01, Calculation of percent fiber.
Anon. AACC International approved method 43-13.01, Calculation of percent protein.
Anon. (2013). Iranian Institute of Standards and Industrial Research. Cake – Specification and test methods. ISIRI No. 2553. [In Persian].
Anon. (1989). Iranian Institute of Standards and Industrial Research. Method for measuring cereal fat and its products. ISIRI No. 2862. [In Persian].
Ahmadabad, H., Firizi, M. & Behnamfar, M. (2016). Immunostimulatory effects of trehala manna ethanolic extract on splenocytes and peritoneal macrophages in vitro. Journal of Medicinal Plants and Natural Products, 1, 23-32.
Besheit, S. & EL Gharbawy, A. (1991). Varieties, harvesting date and their Effect on yield and quality of sugar beet. Annals of Agricultural Science, Moshtohar, 29, 717-728.
Brummer, Y. & Cui, S. W. (2005). Understanding carbohydrate analysis. Food carbohydrates: chemistry, physical properties and applications, 1-38.
Dokhani, Sh. & Beheshti, R. (2004). Qualitative and quantitative analysis of dominant sugars and organic acids in two Semirom apple cultivars during HPLC packaging and storage, using high performance liquid chromatography. Journal of Hydrology and Soil Science (Agricultural Science and Technology and Natural Resources). 7(4), 169-183. [In Persian].
Fasahat, P., Aghaeezadeh, M., Jabbari, L., Hemayati, S. S. & Townson, P. (2018). Sucrose accumulation in sugar beet: From fodder beet selection to genomic selection. Sugar Technology, 20, 635-644.
Hamedi, A., Farjadian, S. & Karami, M. R. (2015). Immunomodulatory properties of Trehala manna decoction and its isolated carbohydrate macromolecules. Journal of Ethnopharmacology, 162, 126-121.
Hoseiniyan Benvidi, S.M.H. & Jahanbin, K., )2020(. A new water-soluble polysaccharide from Echinops pungensTrautv roots. Part I. Isolation, purification, characterization and antioxidant activity. International Journal of Biological Macromolecules, 161, 909-916.
Javadi, M., Azim Khani, R., Moradi, A. B. & Tadini Rad R. (2007). Investigation of trehalose biosynthetic pathways and genes involved in Conference.This process in plants by using bioinformatics tools. Conference Paper: Biotechnology. [In Persian]
Kenter, C., Hoffmann, C. M. & Märländer, B. (2006). Effects of weather variables on sugar beet yield development (Beta vulgaris L.). European Journal of Agronomy, 24, 62-69.
Khadim, E.J., Abdulrasool, A.A. & Awad, Z.J. (2014). Phytochemical investigation of alkaloids in the iraqi echinops heterophyllus (Compositae)’, Iraqi Journal of Pharmaceutical Sciences, 23(1), 26–34.
Kroger, M., Meister, K. & Kava, R. (2006). Low‐calorie sweeteners and other sugar substitutes: a review of the safety issues. Comprehensive reviews in food science and food safety, 5(2), 35-47.
Kus-liśkiewicz, M., Górka, A. & Gonchar, M. (2014). Simple assay of trehalose in industrial yeast. Food chemistry, 158, 335-339.
Mohammadi, M. & Dini, M. (2003). Identification of Manna Sources, production mechanism and utilization in Iran. Iranian Journal of Medicinal and Aromatic Plants Research, 17, 75-109. [In Persian]
Müller, J., Boller, T. & Wiemken, A. (1995). Trehalose and trehalase in plants: recent developments. Plant science, 112, 1-9.
Nasirzadeh, A. (2003). Study of some cytomorphalogic characteristics of plant species producing mann-sugar blade (Echinops). Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 11(3), 343-356. doi: 10.22092/ijrfpbgr.2003.116093. [In Persian]
Nasirzadeh, A., Javidtash, A. & Riasat, M. (2005). Identification of Trehala manna species and investigation of some biological features of Larinus vulper Oliv in Fars province. Iranian Medicinal and Aromatic Plants Research, 21 (3), 335-346. [In Persian]
Rechinger, K.H. (1963). Flora Iranica, vols. 1-178. Akademische Druck-U Verlagsanstalt, Graz [Preprint].
Schluepmann, H., Pellny, T., Van Dijken, A., Smeekens, S. & Paul, M. (2003).Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 100, 6849-6854.
Schluepmann, H., Van dijken, A., Aghdasi, M., Wobbes, B., Paul, M. & Smeekens, S. (2004). Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant physiology, 135, 879-890.
Tavakoli, M. (2018). The effect of aqueous extract of sugarcane on physicochemical, sensory and microbial properties of doogh, 2nd International Congress and 25th National Congress of Food Science and Technology of Iran, Sari, available on line at https://civilica.com/doc/873621 [In Persian]
Teramoto, N., Sachinvala, N. D. & Shibata, M. (2008). Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules, 13, 1773-1816.
Thayumanavan, B. & Sadasivam, V. (1984). Method of CHO estimation through anthrone. Plant Food for Human Nutrition, 34.
Van can, J. G., Van loon, L. J., Brouns, F. & Blaak, E. E. (2012). Reduced glycaemic and insulinaemic responses following trehalose and isomaltulose ingestion: implications for postprandial substrate use in impaired glucose-tolerant subjects. British journal of nutrition, 108, 1210-1217.
Yoshikawa, Y., Matsumoto, K., Nagata, K. & Sato, T. (1994). Extraction of trehalose from thermally-treated bakers’ yeast. Bioscience, Biotechnology, and Biochemistry, 58, 1226-1230.
Yoshizane, C., Mizote, A., Arai, C., Arai, N., Ogawa, R., Endo, S., Mitsuzumi, H. & Ushio, S. (2020). Daily consumption of one teaspoon of trehalose can help maintain glucose homeostasis: a double-blind, randomized controlled trial conducted in healthy volunteers. Nutrition Journal, 19, 1-9.
Anon. AACC International approved method 08- 01.01, Total ash basic method.
Anon. AACC International approved method 32- 10.01, Calculation of percent fiber.
Anon. AACC International approved method 43-13.01, Calculation of percent protein.
Anon. (2013). Iranian Institute of Standards and Industrial Research. Cake – Specification and test methods. ISIRI No. 2553. [In Persian].
Anon. (1989). Iranian Institute of Standards and Industrial Research. Method for measuring cereal fat and its products. ISIRI No. 2862. [In Persian].
Ahmadabad, H., Firizi, M. & Behnamfar, M. (2016). Immunostimulatory effects of trehala manna ethanolic extract on splenocytes and peritoneal macrophages in vitro. Journal of Medicinal Plants and Natural Products, 1, 23-32.
Besheit, S. & EL Gharbawy, A. (1991). Varieties, harvesting date and their Effect on yield and quality of sugar beet. Annals of Agricultural Science, Moshtohar, 29, 717-728.
Brummer, Y. & Cui, S. W. (2005). Understanding carbohydrate analysis. Food carbohydrates: chemistry, physical properties and applications, 1-38.
Dokhani, Sh. & Beheshti, R. (2004). Qualitative and quantitative analysis of dominant sugars and organic acids in two Semirom apple cultivars during HPLC packaging and storage, using high performance liquid chromatography. Journal of Hydrology and Soil Science (Agricultural Science and Technology and Natural Resources). 7(4), 169-183. [In Persian].
Fasahat, P., Aghaeezadeh, M., Jabbari, L., Hemayati, S. S. & Townson, P. (2018). Sucrose accumulation in sugar beet: From fodder beet selection to genomic selection. Sugar Technology, 20, 635-644.
Hamedi, A., Farjadian, S. & Karami, M. R. (2015). Immunomodulatory properties of Trehala manna decoction and its isolated carbohydrate macromolecules. Journal of Ethnopharmacology, 162, 126-121.
Hoseiniyan Benvidi, S.M.H. & Jahanbin, K., )2020(. A new water-soluble polysaccharide from Echinops pungensTrautv roots. Part I. Isolation, purification, characterization and antioxidant activity. International Journal of Biological Macromolecules, 161, 909-916.
Javadi, M., Azim Khani, R., Moradi, A. B. & Tadini Rad R. (2007). Investigation of trehalose biosynthetic pathways and genes involved in Conference.This process in plants by using bioinformatics tools. Conference Paper: Biotechnology. [In Persian]
Kenter, C., Hoffmann, C. M. & Märländer, B. (2006). Effects of weather variables on sugar beet yield development (Beta vulgaris L.). European Journal of Agronomy, 24, 62-69.
Khadim, E.J., Abdulrasool, A.A. & Awad, Z.J. (2014). Phytochemical investigation of alkaloids in the iraqi echinops heterophyllus (Compositae)’, Iraqi Journal of Pharmaceutical Sciences, 23(1), 26–34.
Kroger, M., Meister, K. & Kava, R. (2006). Low‐calorie sweeteners and other sugar substitutes: a review of the safety issues. Comprehensive reviews in food science and food safety, 5(2), 35-47.
Kus-liśkiewicz, M., Górka, A. & Gonchar, M. (2014). Simple assay of trehalose in industrial yeast. Food chemistry, 158, 335-339.
Mohammadi, M. & Dini, M. (2003). Identification of Manna Sources, production mechanism and utilization in Iran. Iranian Journal of Medicinal and Aromatic Plants Research, 17, 75-109. [In Persian]
Müller, J., Boller, T. & Wiemken, A. (1995). Trehalose and trehalase in plants: recent developments. Plant science, 112, 1-9.
Nasirzadeh, A. (2003). Study of some cytomorphalogic characteristics of plant species producing mann-sugar blade (Echinops). Iranian Journal of Rangelands and Forests Plant Breeding and Genetic Research, 11(3), 343-356. doi: 10.22092/ijrfpbgr.2003.116093. [In Persian]
Nasirzadeh, A., Javidtash, A. & Riasat, M. (2005). Identification of Trehala manna species and investigation of some biological features of Larinus vulper Oliv in Fars province. Iranian Medicinal and Aromatic Plants Research, 21 (3), 335-346. [In Persian]
Rechinger, K.H. (1963). Flora Iranica, vols. 1-178. Akademische Druck-U Verlagsanstalt, Graz [Preprint].
Schluepmann, H., Pellny, T., Van Dijken, A., Smeekens, S. & Paul, M. (2003).Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 100, 6849-6854.
Schluepmann, H., Van dijken, A., Aghdasi, M., Wobbes, B., Paul, M. & Smeekens, S. (2004). Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant physiology, 135, 879-890.
Tavakoli, M. (2018). The effect of aqueous extract of sugarcane on physicochemical, sensory and microbial properties of doogh, 2nd International Congress and 25th National Congress of Food Science and Technology of Iran, Sari, available on line at https://civilica.com/doc/873621 [In Persian]
Teramoto, N., Sachinvala, N. D. & Shibata, M. (2008). Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules, 13, 1773-1816.
Thayumanavan, B. & Sadasivam, V. (1984). Method of CHO estimation through anthrone. Plant Food for Human Nutrition, 34.
Van can, J. G., Van loon, L. J., Brouns, F. & Blaak, E. E. (2012). Reduced glycaemic and insulinaemic responses following trehalose and isomaltulose ingestion: implications for postprandial substrate use in impaired glucose-tolerant subjects. British journal of nutrition, 108, 1210-1217.
Yoshikawa, Y., Matsumoto, K., Nagata, K. & Sato, T. (1994). Extraction of trehalose from thermally-treated bakers’ yeast. Bioscience, Biotechnology, and Biochemistry, 58, 1226-1230.
Yoshizane, C., Mizote, A., Arai, C., Arai, N., Ogawa, R., Endo, S., Mitsuzumi, H. & Ushio, S. (2020). Daily consumption of one teaspoon of trehalose can help maintain glucose homeostasis: a double-blind, randomized controlled trial conducted in healthy volunteers. Nutrition Journal, 19, 1-9.